Skip to main content
Log in

Analytical investigation of viscoelastic creeping flow and heat transfer inside a curved rectangular duct

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

An exact solution for creeping viscoelastic flow and heat transfer in a curved rectangular duct is presented based on the order of magnitude technique. Here, the Criminale-Eriksen-Filbey model is used as constitutive equation. The closed form of axial velocity, flow rate, flow resistance ratio, pressure distribution, stress field, temperature and Nusselt number are presented, and the effect of aspect ratio, curvature ratio and both of the first and the second normal stress differences on the flow and heat transfer are investigated. One of the noticeable results of current research is confirming the independency of flow resistance and Nusselt number of creeping flow inside the curved duct to curvature ratio at aspect ratio 0.89077.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dean, W.R., Note on the Motion of a Fluid in a Curved Pipe, Philos. Mag., 1927, vol. 4, p. 208.

    Google Scholar 

  2. Dean, W.R., The Streamline Motion of a Fluid in a Curved Pipe, Philos. Mag., 1928, vol. 5, p. 673.

    Google Scholar 

  3. Thomas, R.H. and Walters, K., On the Flow of an Elastic-Viscous Liquid in a Curved Pipe under a Pressure Gradient, J. Fluid Mech., 1963, vol. 16, p. 228.

    Article  Google Scholar 

  4. Sharma, H.G. and Prakash, A., Flow of a Second Order Fluid in a Curved Pipe, Indian J. Pure Appl. Math., 1977, vol. 8, p. 546.

    Google Scholar 

  5. Iemoto, Y., Nagata, M., and Yamamoto, F., Steady Laminar Flow of a Power-Law Fluid in a Curved Pipe of Circular Cross-Section with Varying Curvature, J. Non-Newtonian Fluid Mech., 1985, vol. 19, p. 161.

    Article  CAS  Google Scholar 

  6. Iemoto, Y., Nagata, M., and Yamamoto, F., Steady Laminar Flow of Viscoelastic Fluid in a Curved Pipe of Circular Cross-Section with Varying Curvature, J. Non-Newtonian Fluid Mech., 1986, vol. 22, p. 101.

    Article  Google Scholar 

  7. Bowen, P.J., Davies, A.R., and Walters, K., On Viscoelastic Effects in Swirling Flows, J. Non-Newtonian Fluid Mech., 1991, vol. 38, p. 113.

    Article  CAS  Google Scholar 

  8. Sarin, V.B., Flow of an Elastic-Viscous Liquid in a Curved Pipe of Slowly Varying Curvature, Int. J. Biomed. Comput., 1993, vol. 32, p. 135.

    Article  CAS  Google Scholar 

  9. Sarin, V.B., The Steady Laminar Flow of an Elastic-Viscous Liquid in a Curved Pipe of Varying Elliptic Cross Section, Math. Comput. Modell., 1997, vol. 26, p. 109.

    Article  Google Scholar 

  10. Das, B., Flow of a Bingham Fluid in a Slightly Curved Tube, Int. J. Eng. Sci., 1992, vol. 30, p. 1193.

    Article  CAS  Google Scholar 

  11. Robertson, A.M., Muller, S.J., Flow of Oldroyd-B Fluids in Curved Pipes of Circular and Annular Cross-Section, Int. J. Non-Lin. Mech., 1996, vol. 31, p. 3.

    Article  Google Scholar 

  12. Jitchote, W. and Robertson, A.M., Flow of Second Order Fluids in Curved Pipes, J. Non-Newtonian Fluid Mech., 2000, vol. 90, p. 91.

    Article  CAS  Google Scholar 

  13. Zhang, M.K., Shen, X.R., Ma, J.F., and Zhang, B.Z., Galerkin Method Study on Flow of Oldroyd-B Fluids in Curved Circular Cross-Section Pipes, J. Zhejiang Univ. Sci., 2007, vol. 7, p. 263.

    Google Scholar 

  14. Zheng, N. R., Viscoelastic Flow in a Curved Duct: a Similarity Solution for the Oldroyd-B Fluid, Z. Angew. Math. Phys., 1990, vol. 41, p. 766.

    Article  Google Scholar 

  15. Fan, Y., Tanner, R.I., and Phan-Thien, N., Fully Developed Viscous and Viscoelastic Flows in Curved Pipes, J. Fluid Mech., 2001, vol. 440, p. 327.

    Article  CAS  Google Scholar 

  16. Helin, L., Thais, L., and Mompean, G., Numerical Simulation of Viscoelastic Dean Vortices in a Curved Duct, J. Non-Newtonian Fluid Mech., 2009, vol. 156, p. 84.

    Article  CAS  Google Scholar 

  17. Boutabaa, M., Helin, L., Mompean, G., and Thais, L., Numerical Study of Dean Vortices in Developing Newtonian and Viscoelastic Flows through a Curved Duct of Square Cross-Section, J. Non-Newtonian Fluid Mech., 2009, vol. 337, p. 40.

    Google Scholar 

  18. Norouzi, M., Kayhani, M.H., Shu, C., and Nobari, M.R., H, Flow of a Second-Order Fluid in a Curved Duct with Square Cross-Section, J. Non-Newtonian Fluid Mech., 2010, vol. 165, p. 323.

    Article  CAS  Google Scholar 

  19. Norouzi, M., Kayhani, M.H., Nobari, M.R.H., and Karimi-Demneh, M., Convective Heat Transfer of Viscoelastic Flow in a Curved Duct, World Academy of Science, Engineering and Technology, 2009, vol. 56, p. 327.

    Google Scholar 

  20. Chen, Y., Chen, H., Zhang, J., and Zhang, B., Viscoelastic Flow in Rotating Curved Pipes, Phys. Fluids, 2006, vol. 18, p. 1.

    Google Scholar 

  21. Zhang, M.K., Shen, X.R., Ma, J.F., and Zhang, B.Z., Flow of Oldroyd-B Fluid in Rotating Curved Square Ducts, J. Hydrodyn., 2007, vol. 19, p. 36.

    Article  CAS  Google Scholar 

  22. Phan-Thien, N., Understanding Viscoelasticity, New York: Springer, 2002.

    Google Scholar 

  23. Bird, R.B. and Wiest, J.M., Constitutive Equations for Polymeric Liquids, Annu. Rev. Fluid Mech., 1995, vol. 27, p. 169.

    Article  Google Scholar 

  24. Beris, A., Armstrong, R.C., and Brown, R.A., Perturbation Theory for Viscoelastic Fluids between Eccentric Rotating Cylinders, J. Non-Newtonian Fluid Mech., 1983, vol. 13, p. 109.

    Article  CAS  Google Scholar 

  25. Bird, R.B., Armstrong, R.C., and Hassager, O., Dynamics of Polymer Liquids, New York: Wiley, 1987, 2nd ed., vol. 1.

    Google Scholar 

  26. Tanner, R.I., Engineering Rheology, London: Oxford Univ. Press, 2000, 2nd ed.

    Google Scholar 

  27. White, F.M., Viscous Fluid Flow, New York: McGraw-Hill, 1991, 2nd ed.

    Google Scholar 

  28. Topakoglu, H.C., Steady Laminar Flow of an Incompressible Viscous Fluid in a Curved Pipe, J. Math. Mech., 1967, vol. 16, p. 1231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Norouzi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norouzi, M., Kayhani, M.H., Nobari, M.R.H. et al. Analytical investigation of viscoelastic creeping flow and heat transfer inside a curved rectangular duct. Theor Found Chem Eng 45, 53–67 (2011). https://doi.org/10.1134/S0040579511010052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579511010052

Keywords

Navigation