Skip to main content
Log in

Mechanical Properties of a Laser-Modified Amorphous Fe–Ni–B Alloy

  • ADVANCED MATERIALS AND TECHNOLOGIES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The morphological features of changes in the surface layers of melt-quenched ribbons of an Fe53.3Ni26.5B20.2 amorphous alloy are studied as functions of the nanopulsed laser treatment intensity. The behavior of the mechanical properties of the alloy (hardness, elastic modulus, elastic recovery parameter of indentation under indenter) is investigated by depth-sensing indentation along the radius of a circular laser irradiation zone at various numbers of pulses. Effective laser irradiation parameters, which promote an increase in the mechanical properties of the surface layer of the amorphous Fe53.3Ni26.5B20.2 alloy, are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Materialia 48, 279–306 (2000).

    Article  CAS  Google Scholar 

  2. A. M. Glezer, I. E. Permyakova, V. V. Gromov, and V. V. Kovalenko, Mechanical Behavior of Amorphous Alloys (SibGIU, Novokuznetsk, 2006).

  3. F. E. Luborsky, Amorphous Metallic Alloys (Butterworth, London, 1983).

    Book  Google Scholar 

  4. I. Permyakova and A. Glezer, “Mechanical behavior of Fe- and Co-based amorphous alloys after thermal action,” Metals 12 (2), 297 (2022).

    Article  CAS  Google Scholar 

  5. I. E. Permyakova, “Effect of laser radiation on the structure and properties of amorphous alloys: a review,” Bull. Russ. Acad. Sci.: Phys. 82, 1086–1095 (2018).

    Article  CAS  Google Scholar 

  6. H. Huang, M. Jiang, and J. Yan, “Softening of Zr-based metallic glass induced by nanosecond pulsed laser irradiation,” J. Alloys Compd. 754, 215–221 (2018).

    Article  CAS  Google Scholar 

  7. Y. Qian, M. Jiang, Z. Zhang, H. Huang, J. Hong, and J. Yan, “Microstructures and mechanical properties of Zr-based metallic glass ablated by nanosecond pulsed laser in various gas atmospheres,” J. Alloys Compd. 901, 163717 (2022).

    Article  CAS  Google Scholar 

  8. N. N. Sitnikov, A. V. Shelyakov, I. A. Khabibullina, and K. A. Borodako, “Two-way shape memory effect in rapidly quenched highly doped alloys of TiNi–TiCu system upon laser treatment,” Bull. Russ. Acad. Sci.: Phys. 82 (9), 1136–1142 (2018).

    Article  CAS  Google Scholar 

  9. K. A. Borodako, A. V. Shelyakov, N. N. Sitnikov, A. V. Irzhak, N. Y. Tabachkova, A. A. Ivanov, and V. V. Koledov, “Application of laser radiation for creation of metamaterial based on rapidly quenched shape memory TiNiCu alloy,” J. Phys.: Conf. Ser. 1461 (1), 012018 (2020).

    CAS  Google Scholar 

  10. S. Moradi, S. Kamal, P. Englezos, and S. G. Hatzi-kiriakos “Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity,” Nanotechnology 24 (41), 415302 (2013).

    Article  Google Scholar 

  11. A. H. A. Lutey, L. Gemini, L. Romoli, G. Lazzini, F. Fuso, M. Faucon, and R. Kling, “Towards laser-textured antibacterial surfaces,” Sci. Reports 8 (1), 10112 (2018).

    Google Scholar 

  12. Z. Ou, M. Huang, and F. Zhao, “The fluence threshold of femtosecond laser blackening of metals: the effect of laser-induced ripples,” Optics Laser Technol. 79, 79–87 (2016).

    Article  CAS  Google Scholar 

  13. J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258 (19), 7625–7632 (2012).

    Article  CAS  Google Scholar 

  14. R. Drevinskas, M. Beresna, J. Zhang, A. G. Kazanskii, and P. G. Kazansky, “Ultrafast laser-induced metasurfaces for geometric phase manipulation,” Adv. Opt. Mater. 5 (1), 1600575 (2017).

    Article  Google Scholar 

  15. A. Makino, T. Kubota, C.T. Chang, M. Makabe, and A. Inoue, “FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness,” J. Magn. Magn. Mater. 320, 2499–2503 (2008).

    Article  CAS  Google Scholar 

  16. T. Chang, T. Kubota, A. Makino, and A. Inoue, “Synthesis of ferromagnetic Fe-based bulk glassy alloys in the Fe–Si–B–P–C system,” J. Alloys Compd. 473, 368–372 (2009).

    Article  CAS  Google Scholar 

  17. H. R. Lashgari, D. Chu, S. Xie, H. Sun, M. Ferry, and S. Li, “Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: a review study,” J. Non-Cryst. Solids 391 (19), 61–82 (2014).

    Article  CAS  Google Scholar 

  18. A. Useinov, V. Reshetov, I. Maslenikov, and K. Kravchuk, “ISO is simple!” Nanoindustr., No. 7, 52–60 (2015).

  19. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7 (6), 1564–1583 (1992).

    Article  CAS  Google Scholar 

  20. ISO 14577–1. Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters. Part 1: Test Method (ISO Central Secretariat, Geneva, 2002).

  21. W. D. Liu, L. M. Ye, and K. X. Liu, “Micro-nano scale ripples on metallic glass induced by laser pulse,” J. Appl. Phys. 109, 043109 (2011).

    Article  Google Scholar 

  22. I. E. Permyakova, “Modeling thermal fields in amorphous alloys during treatment with a pulsed excimer laser,” Bull. Russ. Acad. Sci.: Phys. 84, 839–843 (2020).

    Article  CAS  Google Scholar 

  23. S. A. Firstov, V. F. Gorban’, E. P. Pechkovskii, and N. A. Mameka, “Relation between the strength characteristics of materials and automatic indentation indicators,” Materialoved. 11, 26–31 (2007).

    Google Scholar 

  24. B. R. Lawn and V. R. Howes, “Elastic recovery at hardness indentations,” J. Mater. Sci. 16, 2745–2752 (1981).

    Article  CAS  Google Scholar 

  25. S. Veprek, “The search for novel superhard material,” J. Vac. Sci. Technol., A 17 (5), 2401–2420 (1999).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-08-00341 “a.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Permyakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Permyakova, I.E., Ivanov, A.A. & Chernogorova, O.P. Mechanical Properties of a Laser-Modified Amorphous Fe–Ni–B Alloy. Russ. Metall. 2022, 1264–1269 (2022). https://doi.org/10.1134/S003602952210038X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602952210038X

Navigation