Skip to main content
Log in

DFT Study of Potential Barriers and Trajectory of CO2 Adsorption/Desorption As Well As Dissociation on Clusters Simulating Fe (100), Fe (110), and Fe (111) Facets

  • PHYSICAL CHEMISTRY OF DISPERSED SYSTEMS AND SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Density functional theory calculations (DFT) were performed to investigate the Fe-facet effect on the CO2 potential barrier as well as trajectory of CO2 adsorption. It was found that potential barrier of CO2 adsorption on Fe (111) is almost absent (~0.01 eV). At the same time, potential barriers of CO2 adsorption on Fe (100) and Fe (110) are 0.10 and 0.26 eV, correspondingly. The most stable configuration of CO2 adsorption on different Fe facets under consideration is CO2 adsorbed on Fe (111) with heat effect –1.16 eV, whereas adsorption energies of CO2 on Fe (100) and Fe (110) are –0.87 and –0.15 eV, correspondingly. Found values are in good agreement with literature data. Most energetically favorable trajectory of the CO2 adsorption passes through 2-fold adsorption site (located near two neighbor Fe atoms) in case of flat Fe facets (100) and (110). Unexpectable tend to spontaneous dissociation of CO2 molecule on desorption stage was found at distance ~2.66 Å above Fe (100) surface. Analysis of electron spin distributions allows one to conclude that dissociation is caused by excitation of CO2 molecule accompanied with rearrangement of the spin density of the both CO2 molecule and surface Fe (100) atoms rather than charge transfer. CO2 dissociation on adsorption stage on Fe (100) facet was not found as well as it was not observed over other Fe facets both on desorption and on adsorption stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. Wang, Sh. Wang, X. Ma, and J. Gong, Chem. Soc. Rev. 40, 3703 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. H. Yang, Ch. Zhang, P. Gao, et al., Catal. Sci. Technol., No. 7, 4580 (2017).

  3. W. Wang and J. Gong, Front. Chem. Sci. Eng., No. 5, 2 (2011).

  4. V. I. Bogdan, Ya. A. Pokusaeva, A. E. Koklin, et al., Energy Technol., No. 7, 1900174 (2019).

  5. N. Boreriboon, X. Jiang, Ch. Song, and P. Prasassarakich, Top. Catal. 61, 1551 (2018).

    Article  CAS  Google Scholar 

  6. Ya. A. Pokusaeva, A. E. Koklin, V. V. Lunin, and V. I. Bogdan, Mendeleev Commun. 29, 382 (2019).

    Article  CAS  Google Scholar 

  7. E. de Smit, F. Cinquini, A. M. Beale, et al., J. Am. Chem. Soc. 132, 14928 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. F. Solymosi, J. Mol. Catal. 65, 337 (1991).

    Article  CAS  Google Scholar 

  9. H.-J. Freund and M. W. Roberts, Surf. Sci. Rep. 25, 225 (1991).

    Article  Google Scholar 

  10. M. H. Nassir and D. J. Dwyer, J. Vac. Sci. Technol., A 11, 2104 (1993).

    Article  CAS  Google Scholar 

  11. G. Heß, C. Baumgartner, A. Petkova, and H. Froitzheim, Surf. Sci. 572, 355 (2004).

    Article  Google Scholar 

  12. T. Seyller, D. Borgmann, and G. Wedler, Surf. Sci. 400, 63 (1998).

    Article  CAS  Google Scholar 

  13. G. Meyer, E. Reinhart, D. Borgmann, and G. Wedler, Surf. Sci. 320, 110 (1994).

    Article  CAS  Google Scholar 

  14. V.-Al. Glezakou and L. X. Dang, J. Phys. Chem. C 113, 3691 (2009).

    Article  CAS  Google Scholar 

  15. H. Wang, X. Nie, Y. Chen, et al., J. CO2 Util. 26, 160 (2018).

  16. H. Wang, X. Nie, X. Guo, and Ch. Song, J. CO2 Util. 15, 107 (2016).

  17. C. R. Kwawu, R. Tia, E. Adei, et al., Phys. Chem. Chem. Phys. 19, 19478 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. H. Jonsson, G. Mills, and K. W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edn. B, Ed. by J. Berne, G. Ciccotti, and D. F. Cooker (World Scientific, Singapore, 1998), p. 385.

  19. X. Liu, L. Sun, and W.-Q. Deng, J. Phys. Chem. C 122, 8306 (2018).

    Article  CAS  Google Scholar 

  20. F. Neese, Wiley Interdisc. Rev. - Comput. Mol. Sci. 2, 73 (2012).

    Article  CAS  Google Scholar 

  21. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010).

  23. F. Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. A. Hellweg, C. Hattig, S. Hofener, and W. Klopper, Theor. Chem. Acc. 117, 587 (2007).

    Article  CAS  Google Scholar 

  25. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

    Article  CAS  Google Scholar 

  26. www.open-mpi.org/software/ompi/v3.1.

  27. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

    Article  CAS  Google Scholar 

  28. www.jmol.org/.

  29. A. R. Allouche, J. Comput. Chem. 32, 174 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. H.-J. Li and J.-J. Ho, J. Phys. Chem. C 114, 1194 (2010).

    Article  CAS  Google Scholar 

  31. W. Taifan, J.-F. Boily, and J. Baltrusaitisa, Surf. Sci. Rep. 71, 595 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Tolkachev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolkachev, N.N., Pokusaeva, Y.A. & Bogdan, V.I. DFT Study of Potential Barriers and Trajectory of CO2 Adsorption/Desorption As Well As Dissociation on Clusters Simulating Fe (100), Fe (110), and Fe (111) Facets. Russ. J. Phys. Chem. 97, 1782–1791 (2023). https://doi.org/10.1134/S0036024423080289

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423080289

Keywords:

Navigation