Skip to main content
Log in

Mechanism of the Reaction between Cyanocobalamin and Reduced Flavin Mononucleotide

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A study on the kinetics of the reaction between cyanocobalamin (vitamin B12, CNCbl) and the reduced form of flavin mononucleotide (FMNH2) in weakly acidic, neutral, and slightly alkaline media is performed. It is shown that FMNH2 can reduce CNCbl to cobalamin(II) (Cbl(II)). It is established that protonated, mono-deprotonated, and di-deprotonated forms of FMNH2 can participate in the reaction. The reaction mechanism includes the slow substitution of the 5,6-dimethylbenzimidazole nucleotide with FMNH2 molecule, rapid electron transfer from FMNH2 to Co(III) ions, and the subsequent dissociation of cyanide. The reaction is reversible, due to the ability of the oxidized form of FMNH2 (FMN) to react with the Cbl(II) complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Bridwell-Rabb and C. L. Drennan, Curr. Opin. Chem. Biol. 37, 63 (2017).

    Article  CAS  Google Scholar 

  2. K. L. Brown, Chem. Rev. 105, 2075 (2005).

    Article  CAS  Google Scholar 

  3. B. Krautler, Biochem. Soc. Trans. 33, 806 (2005).

    Article  CAS  Google Scholar 

  4. R. Banerjee, ACS Chem. Biol. 1, 149 (2006).

    Article  CAS  Google Scholar 

  5. L. Hannibal, P. M. DiBello, and D. W. Jacobsen, Clin. Chem. Lab. Med. 51, 477 (2013).

    Article  CAS  Google Scholar 

  6. C. Gherasim, M. Lofgren, and R. Banerjee, J. Biol. Chem. 288, 13186 (2013).

    Article  CAS  Google Scholar 

  7. L. Hannibal, J. Kim, N. E. Brasch, et al., Mol. Genet. Metab. 97, 260 (2009).

    Article  CAS  Google Scholar 

  8. J. Kim, L. Hannibal, C. Gherasim, D. W. Jacobsen, and R. Banerjee, J. Biol. Chem. 284, 33418 (2009).

    Article  CAS  Google Scholar 

  9. J. Kim, C. Gherasim, and R. Banerjee, Proc. Natl. Acad. Sci. U. S. A. 105, 14551 (2008).

    Article  CAS  Google Scholar 

  10. M. Koutmos, C. Gherasim, J. L. Smith, and R. Banerjee, J. Biol. Chem. 286, 29780 (2011).

    Article  CAS  Google Scholar 

  11. D. Lexa, J. M. Savéant, and J. Zickler, J. Am. Chem. Soc. 102, 2655 (1980).

    Google Scholar 

  12. I. A. Dereven’kov, L. Hannibal, S. V. Makarov, and P. A. Molodtsov, J. Biol. Inorg. Chem. 25, 125 (2020).

    Article  Google Scholar 

  13. H. Olteanu and R. Banerjee, J. Biol. Chem. 276, 35558 (2001).

    Article  CAS  Google Scholar 

  14. H. Olteanu, T. Munson, and R. Banerjee, Biochemistry 41, 13378 (2002).

    Article  CAS  Google Scholar 

  15. K. R. Wolthers and N. S. Scrutton, Biochemistry 43, 490 (2004).

    Article  CAS  Google Scholar 

  16. K. Zhou and F. Zelder, J. Porphyr. Phthalocyan. 15, 555 (2011).

    Article  CAS  Google Scholar 

  17. T. A. Stich, N. R. Buan, and T. C. Brunold, J. Am. Chem. Soc. 126, 9735 (2004).

    Article  CAS  Google Scholar 

  18. P. Macheroux, S. Ghisla, C. Sanner, et al., BMC Biochem. 6, 26 (2005).

    Article  Google Scholar 

  19. S. G. Mayhew, Eur. J. Biochem. 265, 698 (1999).

    Article  CAS  Google Scholar 

  20. D. S. Salnikov, I. A. Dereven’kov, E. N. Artyushina, and S. V. Makarov, Russ. J. Phys. Chem. A 87, 44 (2013).

    Article  CAS  Google Scholar 

  21. P. George, D. H. Irvine, and S. C. Glauser, Ann. N. Y. Acad. Sci. 88, 393 (1960).

    Article  CAS  Google Scholar 

  22. E. J. Land and A. J. Swallow, Biochemistry 8, 2117 (1969).

    Article  CAS  Google Scholar 

  23. B. Holmström, Photochem. Photobiol. 3, 97 (1964).

    Article  Google Scholar 

  24. I. A. Dereven’kov, L. Hannibal, M. Dürr, et al., J. Organomet. Chem. 839, 53 (2017).

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from the Russian Science Foundation, project no. 19-73-00147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Dereven’kov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dereven’kov, I.A., Ugodin, K.A. & Makarov, S.V. Mechanism of the Reaction between Cyanocobalamin and Reduced Flavin Mononucleotide. Russ. J. Phys. Chem. 95, 2020–2024 (2021). https://doi.org/10.1134/S003602442110006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442110006X

Keywords:

Navigation