Skip to main content
Log in

Electrocatalytic Reduction of Oxygen on Reduced Graphene Oxide/Iron Oxide (rGO/Fe3O4) Composite Electrode

  • COLLOID CHEMISTRY AND ELECTROCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Reduced graphene oxide/iron oxide (rGO/Fe3O4) nanocomposite was synthesized by facile one-pot process and its performance as electrocatalyst for oxygen reduction reaction (ORR) was investigated. The nanocomposite was physically and electrochemically characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) method, scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). FT-IR, XRD, and SEM confirms the presence of rGO and Fe3O4 as whole. CV data shows increment in current responses nearly two and a half folds for rGO/Fe3O4/GCE. EIS analysis shows stable electron transfers with lower charge transfer resistance (Rct) of modified electrode due to synergistic effect between rGO and Fe3O4. The performance of the electrocatalyst in ORR was compared with bare GCE and rGO/GCE where higher catalytic performance and better stability were obtained. The analysis results shows that the compound could be a promising material for fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Q. Yan and J. Wu, Energy Convers. Manage. 49, 2425 (2008).

    Article  CAS  Google Scholar 

  2. Y. Deng, D. Qi, C. Deng, X. Zhang, and D. Zhao, J. Am. Chem. Soc. 130, 28 (2008).

    Article  CAS  Google Scholar 

  3. Y. Liu, M. Guan, L. Feng, and S. Deng, Nanotechnology 24, 025604 (2013).

    Article  Google Scholar 

  4. X. Yang, X. Zhang, Y. Ma, Y. Huang, and Y. Chen, J. Mater. Chem. 86, 2710 (2009).

    Article  Google Scholar 

  5. L. U. Kui, Z. Guixia, and W. Xiangke, Chin. Sci. Bull. 57, 1223 (2012).

    Article  Google Scholar 

  6. M. R. Hajiali, L. Jamilpanah, Z. Sheykhifard, M. Mokhtarzadeh, H. F. Yazdi, and B. Tork, Eprint ArVix, 1 (2017).

  7. A. Kagkoura, T. Skaltsas, and N. Tagmatarchis, Chem. - Eur. J. 23, 12967 (2017).

    Article  CAS  Google Scholar 

  8. K. Wang, P. Pei, Y. Wang, C. Liao, W. Wang, and S. Huang, Appl. Energy 225, 848 (2018).

    Article  CAS  Google Scholar 

  9. R. Krishna, C. Dias, J. Ventura, and E. Titus, Mater. Today: Proc. 3, 2807 (2016).

    Google Scholar 

  10. A. K. Khan, A. U. Saba, S. Nawazish, F. Akhtar, R. Rashid, S. Mir, and G. Murtaza, Oxid. Med. Cell. Longev. 2017, 8158315 (2017).

    Google Scholar 

  11. R. S. García, S. Stafford, and Y. K. Gun’ko, Appl. Sci. (Switzerland) 8 (2), 12 (2018).

    Google Scholar 

  12. N. Zhu, H. Ji, P. Yu, J. Niu, M. U. Farooq, M. W. Akram, and X. Niu, Nanomaterials 8 (10), 1 (2018).

    Google Scholar 

  13. M. Chen, L. Wang, H. Yang, S. Zhao, H. Xu, and G. Wu, J. Power Sources 375, 277 (2018).

    Article  CAS  Google Scholar 

  14. W. M. Khairul, N. B. Muhamad, and F. Yusoff, J. Solid State Chem. 275, 30 (2019).

    Article  Google Scholar 

  15. W. Hooch Antink, Y. Choi, K. D. Seong, J. M. Kim, and Y. Piao, Adv. Mater. Interfaces 5 (5), 1 (2018).

    Google Scholar 

  16. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  17. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, and J. M. Tour, ACS Nano 4, 4806 (2010).

    Article  CAS  Google Scholar 

  18. F. W. Low, C. W. Lai, and S. B. Abd Hamid, Ceram. Int. 43, 625 (2017).

    Article  CAS  Google Scholar 

  19. H. K. Can, S. Kavlak, S. Parvizi Khosroshahi, and A. Güner, Artif. Cells, Nanomed. Biotechnol. 46, 421 (2018).

    Article  CAS  Google Scholar 

  20. R. Bhargava and S. Khan, Adv. Powder Technol. 28, 2812 (2017).

    Article  CAS  Google Scholar 

  21. P. Devi, C. Sharma, P. Kumar, M. Kumar, B. K. S. Bansod, M. K. Nayak, and M. L. Singla, J. Hazard. Mater. 322, 85 (2017).

    Article  CAS  Google Scholar 

  22. D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, Prog. Mater. Sci. 90, 75 (2017).

    Article  CAS  Google Scholar 

  23. W. Wang, H. Cao, X. Zhou, and Z. Liu, in Graphene: Energy Storage and Conversion Applications, Vol. 6 of Electrochemical Energy Storage and Conversion (CRC, Boca Raton, FL, 2014), p. 21.

  24. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, and Y. Yang, Energy Environ. Sci. 4, 2826 (2011).

    Article  CAS  Google Scholar 

  25. Y. Farhanini, N. T. Khing, C. C. Hao, L. P. Sang, N. B. Muhamad, and N. Md Saleh, Malays. J. Anal. Sci. 22, 227 (2018).

    Google Scholar 

  26. N. B. Muhamad and F. Yusoff, Malays. J. Anal. Sci. 22, 921 (2018).

    Google Scholar 

  27. R. S. Nicholson, Anal. Chem. 37, 1351 (1965).

    Article  CAS  Google Scholar 

  28. F. Yusoff, N. Mohamed, A. Azizan, and S. Ab Ghani, Int. J. Electrochem. Sci. 11, 5766 (2016).

    Article  CAS  Google Scholar 

  29. F. Yusoff, A. Aziz, N. Mohamed, and S. A. Ghani, Int. J. Electrochem. Sci. 8, 10672 (2013).

    CAS  Google Scholar 

  30. B. Wang, J. Power Sources 152, 1 (2005).

    Article  CAS  Google Scholar 

  31. H. Chen, X. Wang, G. Liu, A. Lin, Y. Wen, and H. Yang, Sci. China Chem. 58, 1585 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the Ministry of Education Malaysia for the Fundamental Research Grant Scheme, FRGS/1/2017/STG01/UMT/02/2 (vot. no. 59472). Authors also wish to convey sincere thanks to Center of Research and Field Service (CRAFS), UMT for the facilities provided for the research experiments carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Yusoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusoff, F., Suresh, K., Khairul, W.M. et al. Electrocatalytic Reduction of Oxygen on Reduced Graphene Oxide/Iron Oxide (rGO/Fe3O4) Composite Electrode. Russ. J. Phys. Chem. 95, 834–842 (2021). https://doi.org/10.1134/S0036024421040282

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421040282

Keywords:

Navigation