Skip to main content
Log in

Quantum chemical studies on the reactivity of oxazole derivatives

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The quantum chemical study of the reactivity of a series of oxazole derivatives substituted at 2, 4, and 5 positions was performed using B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of theory. Different substituents have been applied to cover a wide range of electronic effects. On the basis of Fukui functions, oxazole derivatives in the gas phase are found to be suitable nucleophilic sites. For the most of studied substituents, it was observed that the calculated Fukui function f - k values at the N-position are small in case of electron-withdrawing substituents, resulting a preferred N-position for hard reactions. In contrast, large f - k values in case of electron-donating groups show a preferred N-position for soft reactions. These two local reactivity descriptors predicted the reactivity of the electron-rich oxazoles sequence to be 2-substituted oxazoles > 5-substituted oxazoles > 4-substituted oxazoles, where due to resonance effect, the reactivity toward electrophilic attack at the pyridine nitrogen atom is enhanced by electron donor substituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tobias, T. C. Wabnitz, J. Q. Yu, and J. B. Spencer, Chem. Eur. J. 10, 484 (2004).

    Article  Google Scholar 

  2. K. Y. Kwon, X. Lin, G. Pawin, K. Wong, and L. Bartels, Langmuir 22, 857 (2006).

    Article  CAS  Google Scholar 

  3. C. U. Murade, V. Subramaniam, C. Otto, and M. L. Bennink, Biophys. J. 97, 835 (2009).

    Article  CAS  Google Scholar 

  4. Q. Dai and X. Q. Zhang, Opt. Express 18, 11821 (2010).

    Article  CAS  Google Scholar 

  5. A. N. Fletcher, R. A. Henry, R. F. Kubin, and R. A. Hollins, Opt. Commun. 48, 352 (1984).

    Article  CAS  Google Scholar 

  6. S. C. S. Costa, M. A. L. Reis, J. Del-Nero, and L. S. Roman, Rev. Propr. Ind. 87, 1943 (2008).

    Google Scholar 

  7. Q. Luo, S. Eibauer, and O. Reiser, J. Mol. Catal. A: Chem. 268, 65 (2007).

    Article  CAS  Google Scholar 

  8. F. Mendez and J. L. Gazquez, J. Am. Chem. Soc. 116, 9298 (1994).

    Article  CAS  Google Scholar 

  9. J. L. Gazquez and F. Mendez, J. Phys. Chem. 98, 4591 (1994).

    Article  CAS  Google Scholar 

  10. Y. Li and J. N. S. Evans, J. Am. Chem. Soc. 117, 7756 (1995).

    Article  CAS  Google Scholar 

  11. L. T. Nguyen, T. N. Le, F. De-Proft, A. K. Chandra, W. Langenaeker, M. T. Nguyen, and P. Geerlings, J. Am. Chem. Soc. 121, 5992 (1999)

    Article  CAS  Google Scholar 

  12. S. Pal and K. R. S. Chandrakumar, J. Am. Chem. Soc. 122, 4145 (2000).

    Article  CAS  Google Scholar 

  13. P. Perez, Y. Simon-Manso, A. Aizman, P. Fuentealba, and R. Contreras, J. Am. Chem. Soc. 122, 4756 (2000).

    Article  CAS  Google Scholar 

  14. D. Datta and S. N. Singh, J. Chem. Soc. Dalton Trans., 1541 (1991).

    Google Scholar 

  15. D. Datta, J. Chem. Soc. Dalton Trans., 1855 (1992).

    Google Scholar 

  16. L. Benedetti, G. B. Gavioli, and C. Fontanesi, J. Chem. Soc. Faraday Trans. 88, 843 (1992).

    Article  CAS  Google Scholar 

  17. W. Langenaeker, N. Coussement, F. Deproft, and P. Geerlings, J. Phys. Chem. 98, 3010 (1994).

  18. F. Deproft, S. Amira, K. Choho, and P. Geerlings, J. Phys. Chem. 98, 5227 (1994).

    Article  CAS  Google Scholar 

  19. R. C. Deka, R. Vetrivel, and S. Pal, J. Phys. Chem. A 103, 5978 (1999).

    Article  CAS  Google Scholar 

  20. P. Mondal, K. K. Hazarika, and R. C. Deka, Phys. Chem. Commun. 6, 24 (2003).

    Google Scholar 

  21. C. A. Flores-Sandoval, I. P. Zaragoza, V. F. Maranon- Ruiz, J. Correa-Basurto, and J. Trujillo-Ferrara, J. Mol. Struct.: THEOCHEM 713, 127 (2005).

    Article  CAS  Google Scholar 

  22. M. Wisniewski and P. A. Gauden, Appl. Surf. Sci. 255, 4782 (2009).

    Article  CAS  Google Scholar 

  23. P. K. Chattaraj and P. V. R. Schleyer, J. Am. Chem. Soc. 116, 1067 (1994).

    Article  CAS  Google Scholar 

  24. M. Tuszkanow, M. Daszkiewicz, G. Maciejewska, Z. Staszak, J. Wietrzyk, B. Filip, and M. Golonka, Polyhedron 30, 2016 (2011).

    Article  Google Scholar 

  25. M. K. Yan, C. Zheng, J. Yin, Z. F An, R. F. Chen, X. M. Feng, J. S. Q. Fan, and W. Huang, Synth. Met. 162, 641 (2012).

    Article  CAS  Google Scholar 

  26. P. Geerlings, F. De-Proft, and W. Langenaeker, Chem. Rev. 103, 1793 (2003).

    Article  CAS  Google Scholar 

  27. P. K. Chattaraj, U. Sarkar, and D. R. Roy, Chem. Rev. 106, 2065 (2006).

    Article  CAS  Google Scholar 

  28. S. Deuri and P. Phukan, Comput. Theor. Chem. 980, 49 (2012).

    Article  CAS  Google Scholar 

  29. S. Deuri and P. Phukan, J. Mol. Struct.: THEOCHEM 945, 64 (2010).

    Article  CAS  Google Scholar 

  30. S. M. Soleiman, Comput. Theor. Chem. 994, 105 (2012).

    Article  Google Scholar 

  31. V. Pilepic and S. Urslic, J. Mol. Struct.: THEOCHEM 538, 41 (2001).

    Article  CAS  Google Scholar 

  32. A. Richaud and F. Mendeze, J. Mex. Chem. Soc. 56, 351 (2012).

    CAS  Google Scholar 

  33. V. V. Turovtsev, M. Yu. Orlov, R. V. Turovtsev, and Yu. D. Orlov, Russ. J. Phys. Chem. A 86, 1549 (2012).

    Article  CAS  Google Scholar 

  34. E. A. Khatuntseva, M. A. Krest’yaninov, I. V. Fedorova, M. G. Kiselev, and L. P. Safonova, Russ. J. Phys. Chem. A 89, 2248 (2015).

    Article  CAS  Google Scholar 

  35. A. N. Chermahini, B. Hosseinzadeh, A. S. Beni, and A. Teimouri, Comput. Theor. Chem. 994, 97 (2012).

    Article  CAS  Google Scholar 

  36. A. N. Chermahini, A. Ghaedi, A. Teimouri, F. Momenbeik, and H. A. Dabbagh, J. Mol. Struct.: THEOCHEM 867, 78 (2008).

    Article  CAS  Google Scholar 

  37. A. N. Chermahini, A. Teimouri, and A. S. Beni, Comput. Theor. Chem. 1008, 67 (2013).

    Article  CAS  Google Scholar 

  38. A. N. Chermahini, B. Hosseinzadeh, A. S. Beni, and A. Teimouri, Struct. Chem. 25, 583 (2014).

    Article  CAS  Google Scholar 

  39. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09 (Gaussian Inc., Wallingford, CT, 2010).

    Google Scholar 

  40. W. J. Hehre, L. Radom, P. v. R. Schleyer, and A. J. Pople, Ab initio Molecular Orbital Theory (Wiley-Interscience, New York, 1986).

    Google Scholar 

  41. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, J. Chem. Phys. 68, 3801 (1978).

    Article  CAS  Google Scholar 

  42. P. Jaramillo, L. R. Domingo, E. Chamorro, and P. Perez, J. Mol. Struct.: THEOCHEM 865, 68 (2008).

    Article  CAS  Google Scholar 

  43. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).

    Article  CAS  Google Scholar 

  44. R. G. Parr, L. Von-Szentpaly, and S. Liu, J. Am. Chem. Soc. 121, 1922 (1999).

    Article  CAS  Google Scholar 

  45. W. Yang and W. J. Mortier, J. Am. Chem. Soc. 108, 5708 (1986).

    Article  CAS  Google Scholar 

  46. D. R. Roy, R. Parthasarathi, J. Padmanabhan, U. Sarkar, V. Subramanium, and P. K. Chattaraj, J. Phys. Chem. A 110, 1084 (2006).

    Article  CAS  Google Scholar 

  47. P. Perez, L. R. Domingo, M. Doque-Norena, and E. Chamorro, J. Mol. Struct.: THEOCHEM 895, 86 (2009).

    Article  CAS  Google Scholar 

  48. K. R. S. Chandrakumar and S. Pal, J. Phys. Chem. A 107, 5755 (2003).

    Article  CAS  Google Scholar 

  49. A. Mohajeri and M. Abasi, J. Theor. Comput. Chem. 5, 87 (2006).

    Article  CAS  Google Scholar 

  50. R. G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963).

    Article  CAS  Google Scholar 

  51. G. Klopman and R. F. Hudson, Theor. Chem. Acta 8, 165 (1967).

    Article  CAS  Google Scholar 

  52. G. Klopman, J. Am. Chem. Soc. 90, 223 (1968).

    Article  CAS  Google Scholar 

  53. P. K. Chattaraj and B. Maiti, J. Phys. Chem. A 105, 169 (2001).

    Article  CAS  Google Scholar 

  54. H. Chermette, J. Comput. Chem. 20, 129 (1999).

    Article  CAS  Google Scholar 

  55. R. K. Roy, F. De-Proft, and P. Geerlings, J. Phys. Chem. A 102, 7035 (1998).

    Article  CAS  Google Scholar 

  56. W. Langenaeker, F. De-Proft, and P. Geerlings, J. Mol. Struct.: THEOCHEM 362, 175 (1996).

    Article  CAS  Google Scholar 

  57. S. Arulmozhiraja and P. Kolandaivel, Mol. Phys. 90, 55 (1997).

    Article  CAS  Google Scholar 

  58. W. Langenaeker, M. De-Decker, and P. Geerlings, J. Mol. Struct.: THEOCHEM 207, 115 (1990).

    Article  Google Scholar 

  59. J. L. Gazquez, M. Galvan, and A. Vela, J. Mol. Struct.: THEOCHEM 210, 29 (1990).

    Article  Google Scholar 

  60. A. K. Chandra, A. Michalak, M. T. Nguyen, and R. F. Nalewajski, J. Phys. Chem. 102, 10182 (1998).

    Article  CAS  Google Scholar 

  61. S. Krishnamurti, R. K. Roy, R. Vetrivel, S. Iwata, and S. Pal, J. Phys. Chem. A 101, 7253 (1997).

    Article  Google Scholar 

  62. C. Lee, W. Yang, and R. G. Parr, J. Mol. Struct.: THEOCHEM 163, 305 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Hosseinzadeh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, B., Eskandari, K., Zarandi, M. et al. Quantum chemical studies on the reactivity of oxazole derivatives. Russ. J. Phys. Chem. 90, 2202–2210 (2016). https://doi.org/10.1134/S0036024416110042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416110042

Keywords

Navigation