Skip to main content
Log in

Nanocomposite structure and reactivity of perovskites based on lanthanum manganites

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Data on the real/defect structure of anion-excess lanthanum manganites are analyzed. It is shown that low-temperature materials, especially those synthesized with the use of organic additives, form nanocomposite structure due to stabilization of manganese and dopant cations in highly charged states (≥4+) at anion excess. It is established that domains (layers) with perovskite structure containing point defects are separated/intergrown by extended defect regions enriched with lanthanum or promoter cations. It is noted that the composition and concentration of extended defects are controlled by the conditions of synthesis, the calcination temperature, and the nature of the promoter; these defects, which are partly retained after high-temperature treatment, can affect the functional properties of materials. Features of the cation and anion modification of lanthanum manganites and the reactivity of nanocomposite structures with respect to oxidation reactions are analyzed. It is concluded that at a high content of weakly bound oxygen and a noticeable mobility of the lattice oxygen, the activity of these materials in various oxidation reactions is determined by their defect structure and specificity of the catalytic action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).

    Article  CAS  Google Scholar 

  2. J. B. Goodenough, Ann. Rev. Mater. Sci. 28, 1 (1998).

    Article  CAS  Google Scholar 

  3. J. Ayache, Phil. Mag. 86, 2193 (2006).

    Article  CAS  Google Scholar 

  4. K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Chem. Rev. 104, 4637 (2004).

    Article  CAS  Google Scholar 

  5. H. Taimatsu, K. Wada, H. Kaneko, and H. Yamamura, J. Am. Ceram. Soc. 75, 401 (1992).

    Article  CAS  Google Scholar 

  6. Mixed Ionic Electronic Perovskites for Advanced Energy Systems, Ed. by N. Orlovskaya and N. Browning (Kluwer Academic, Boston, Dordrecht, London, 2003).

    Google Scholar 

  7. V. M. Mukhortov and Yu. I. Yuzyuk, Heterostructures. Based on Nano Sized Ferroelectric Films: Production, Properties, and Applications (Yuzhn. Nauchnyi Tsentr RAN, Rostov-on-Don, 2008) [in Russian].

    Google Scholar 

  8. K. Ichimura, Y. Inoue, and I. Yasumori, Catal. Rev.-Sci. Eng. 34, 301 (1992).

    Article  CAS  Google Scholar 

  9. B. Viswanathan, Catal. Rev.-Sci. Eng. 34, 337 (1992).

    Article  CAS  Google Scholar 

  10. T. Shimiru, Catal. Rev.-Sci. Eng. 34, 355 (1992).

    Article  Google Scholar 

  11. T. R. N. Kutty and M. Avudaithai, Catal. Rev.-Sci. Eng. 34, 373 (1992).

    Article  CAS  Google Scholar 

  12. D. B. Hibbert, Catal. Rev.-Sci. Eng. 34, 391 (1992).

    Article  CAS  Google Scholar 

  13. H. Nagamoto, K. Amanuma, H. Nobumoto, and H. Inoue, Chem. Lett. 2, 237 (1988).

    Article  Google Scholar 

  14. H. M. Zhang, Y. Shimiru, and Y. Teraoka, J. Catal. 121, 432 (1990).

    Article  CAS  Google Scholar 

  15. P. E. Marti and A. Beiker, Cat. Lett. 26, 71 (1994).

    Article  CAS  Google Scholar 

  16. T. Seiyama, Catal. Rev.-Sci. Eng. 34, 281 (1992).

    Article  CAS  Google Scholar 

  17. H. Arai, T. Yamada, and K. Eguchi, Appl. Catal. 26, 265 (1986).

    Article  CAS  Google Scholar 

  18. J. G. McCarty and H. Wise, Catal. Today 8, 231 (1990).

    Article  CAS  Google Scholar 

  19. G. K. Chuah, S. Jaenicke, and Y. Lee, Appl. Catal. 72, 51 (1991).

    Article  CAS  Google Scholar 

  20. K. Tabata and M. Misono, Catal. Today 8, 249 (1990).

    Article  CAS  Google Scholar 

  21. H. M. Zhang, Y. Teraoka, and N. Yamazoe, Chem. Lett., p. 665 (1987).

  22. M. A. Pena and J. L. G. Fierro, Chem. Rev. 101, 1981 (2001).

    Article  CAS  Google Scholar 

  23. L. Tejuca, J. Fierro, and J. Tascon, Adv. Catal. 36, 237 (1989).

    Article  CAS  Google Scholar 

  24. T. V. Choudhary, S. Banerjee, and V. R. Choudhary, Appl. Catal., A 234, 1 (2002).

    Article  CAS  Google Scholar 

  25. T. Kuznetsova, V. Sadykov, L. Batuev, et al., in Proceeding of 6th International Symposium on Surface Heterogeneity Effects in Adsorption and Catalysis on Solids (Zakopane, 2006), p. 349.

  26. T. G. Kuznetsova, V. A. Sadykov, V. A. Matyshak, et al., Khim. Interesah Ustoich. Razvit. 13, 779 (2005).

    CAS  Google Scholar 

  27. T. Kuznetsova, V. Sadykov, L. Batuev, L. Kurina, et al., React. Kinet. Catal. Lett. 86, 257 (2005).

    Article  CAS  Google Scholar 

  28. T. G. Kuznetsova, V. A. Sadykov, L. C. Batuev, et al., in Proceeding of the 6 International Workshop on Catalytic Combustion (Ischia, 2005), Vol. 2, p. 82.

  29. L. Ch. Batuev, T. G. Kuznetsova, V. A. Sadykov, et al., in Proceedings of the 2nd International School-Conference of Young Scientists on Catalysis, Catalytic Design: from Researches on Molecular Level to Practical Implementation (Novosibirsk, Altai, 2005), p. 56.

    Google Scholar 

  30. V. A. Sadykov, T. G. Kuznetsova, R. V. Bunina, et al., Khim. Interesah Ustoich. Razvit. 13, 713 (2005).

    CAS  Google Scholar 

  31. T. G. Kuznetsova, V. A. Sadykov, V. A. Matyshak, et al., in Proceedings of the 1st All-Russia Conference on Chemistry for Automobile Transport (Novosibirsk, 2004), p. 74.

  32. L. Ch. Batuev, T. G. Kuznetsova, and V. A. Sadykov, in Proceedings of the All-Russian Scientific Readings (Ulan-Ude, 2007), p. 26.

  33. L. A. Isupova, S. V. Tsybulya, G. N. Kryukova, et al., in Mixed Ionic Electronic Perovskites for Advanced Energy Systems, Ed. by N. Orlovskaya and N. Browing (Kluwer Academic, Boston, Dordrecht London, 2003), p. 137.

    Google Scholar 

  34. A. M. Glazer, Acta Crystallogr. B 28, 3384 (1972).

    Article  CAS  Google Scholar 

  35. A. M. Glazer, Acta Crystallogr. A 31, 756 (1975).

    Article  Google Scholar 

  36. M. V. Abrashev, J. Backstrom, L. Borjesson, et al., Phys. Rev. B 65, 184301 (2002).

    Article  CAS  Google Scholar 

  37. A. Reller, Philos. Mag. A 68, 641 (1993).

    Article  CAS  Google Scholar 

  38. P.-G. de Gennes, Phys. Rev. 118, 141 (1961).

    Article  Google Scholar 

  39. P. G. Radaelli, D. N. Argyriou, D. E. Cox, et al., Mat. Res. Soc. Symp. Proc. 547, 3 (1999).

    Article  CAS  Google Scholar 

  40. P. G. Radaelli, R. M. Ibberson, D. N. Argyriou, et al., Phys. Rev. B 63, 172419 (2001).

    Article  CAS  Google Scholar 

  41. P. J. Saines and B. J. Kennedy, J. Solid State Chem. 181, 298 (2008).

    Article  CAS  Google Scholar 

  42. M. Sánchez-Andujar, A. Castro-Couceiro, B. Rivas-Murias, et al., J. Alloys Compd. 437, 64 (2007).

    Article  CAS  Google Scholar 

  43. K. Z. Baba-Kishi, C. W. Tai, and X. Meng, Philos. Mag. 86, 5031 (2006).

    Article  CAS  Google Scholar 

  44. H. Hilgenkamp and J. Mannhart, Rev. Mod. Phys. 74, 485 (2002).

    Article  CAS  Google Scholar 

  45. T. Egami, W. Dmowski, R. J. McQueeney, and M. Arai, J. Superconductivity 8, 587 (1995).

    Article  CAS  Google Scholar 

  46. T. Pagnier, I. Charrier-Cougoulic, C. Ritter, and G. Lucazeau, Eur. Phys. J. AP9, 1 (1999).

    Google Scholar 

  47. J. Kreisel, A. M. Glazer, G. Jones, et al., J. Phys: Condens. Matter 12, 3267 (2000).

    Article  CAS  Google Scholar 

  48. J. D. Carter, H. U. Anderson, and M. G. Shumsky, J. Mater. Sci. 31, 551 (1996).

    Article  CAS  Google Scholar 

  49. R. E. Meyer, R. Waser, J. Helmbold, and G. Bor- chardt, J. Electroceram. 9, 101 (2002).

    Article  CAS  Google Scholar 

  50. J. Chen, H. M. Chan, and M. P. Harmer, J. Am. Ceram. Soc. 72, 593 (1989).

    Article  CAS  Google Scholar 

  51. C. Boulesteix, F. Varnier, A. Llebaria, and E. Husson, J. Solid State Chem. 108, 141 (1994).

    Article  CAS  Google Scholar 

  52. E. Husson, L. Abello, and A. Morell, Mater. Res. Bull. 25, 539 (1990).

    Article  CAS  Google Scholar 

  53. A. P. Nemudryi, O. N. Koroleva, Yu. T. Pavlyukhin, et al., Izv. Akad. Nauk, Ser. Fiz. 67, 951 (2003).

    Google Scholar 

  54. S. Mathur, H. Shen, and N. S. Nalwa, Encyclopedia Nanosci. Nanotechnol. 4, 131 (2004).

    CAS  Google Scholar 

  55. T. Kuznetsova, V. Sadykov, L. Batuev, et al., J. Natural Gas Chem. 15, 149 (2006).

    Article  CAS  Google Scholar 

  56. A. Machocki, T. Ioannides, B. Stasinska, W. Gac, G. Avgouropoulos, D. Delimaris, W. Grzegorczyk, and S. Pasieczna, J. Catal. 227, 282 (2004).

    Article  CAS  Google Scholar 

  57. A. E. Giannakas, A. K. Ladavos, and P. J. Pomonis, Appl. Catal. B 49, 147 (2004).

    Article  CAS  Google Scholar 

  58. B. P. Barbero, J. A. Gamboa, and L. E. Cadus, Appl. Catal. B 65, 21 (2006).

    Article  CAS  Google Scholar 

  59. M. Alifanti, J. Kirchnerova, and B. Delmon, Appl. Catal. A 245, 231 (2003).

    Article  CAS  Google Scholar 

  60. T. Selyama, N. Yamazoe, and K. Eguchu, Ind. Eng. Chem. Res. 24, 19 (1985).

    Article  Google Scholar 

  61. K. S. Chan, J. Ma, S. Jaenicke, and G. K. Chuah, Appl. Catal. A 107, 201 (1994).

    Article  CAS  Google Scholar 

  62. S. Ponce, M. A. Pena, and J. L. G. Fierro, Appl. Catal. B 24, 193 (2000).

    Article  CAS  Google Scholar 

  63. P. Ciambelli, S. Cimino, S. de Rossi, et al., Appl. Catal. B 24, 243 (2000).

    Article  CAS  Google Scholar 

  64. H. Dai, H. He, P. Li, et al., Catal. Today 90, 231 (2004).

    Article  CAS  Google Scholar 

  65. S. Royer, H. Alamdari, D. Duprez, and S. Kaliaguine, Appl. Catal. B 58, 273 (2005).

    Article  CAS  Google Scholar 

  66. K.-S. Song, H. X. Cui, S. D. Kim, and S.-K. Kang, Catal. Today 47, 155 (1999).

    Article  CAS  Google Scholar 

  67. R. J. Bell, G. J. Millar, and J. Drennan, Solid State Ionics 131, 211 (2000).

    Article  CAS  Google Scholar 

  68. E. Campagnoli, A. Tavares, L. Fabbrini, et al., Appl. Catal. B 55, 133 (2005).

    Article  CAS  Google Scholar 

  69. Y. Zhang-Steenwinkel, H. L. Castricum, J. Beckers, et al., J. Catal. 221, 523 (2004).

    Article  CAS  Google Scholar 

  70. B. Dabrowski, R. Dybzinski, Z. Bukowski, and O. Chmaissem, J. Solid State Chem. 146, 448 (1999).

    Article  CAS  Google Scholar 

  71. C. D. Chandler, C. Roger, and M. J. Hampden-Smith, Chem. Rev. 93, 1205 (1993).

    Article  CAS  Google Scholar 

  72. R. Mahendiran, S. K. Tiwary, A. K. Raychaudhuri, et al., Phys. Rev. B 53, 3348 (1996).

    Article  Google Scholar 

  73. S. Faaland, K. D. Knudsen, M.-A. Einarsrud, et al., J. Solid State Chem. 140, 320 (1998).

    Article  CAS  Google Scholar 

  74. F. Prado, R. D. Sanchez, A. Caneiro, et al., J. Solid State Chem. 146, 418 (1999).

    Article  CAS  Google Scholar 

  75. A. K. Bogush, V. I. Pavlov, and L. V. Balyko, Cryst. Res. Technol. 18, 589 (1983).

    Article  CAS  Google Scholar 

  76. A. A. Elemans, B. van Laab, van der Veen, and B. O. Loopstra, J. Solid State Chem. 3, 238 (1971).

    Article  CAS  Google Scholar 

  77. J. A. M. Roosmalen, P. Vlaanderen, and E. H. P. Cord- funke, J. Solid State Chem. 114, 516 (1995).

    Article  Google Scholar 

  78. St. Naray-Szabo, Naturwissenschaften 31, 466 (1943).

    Article  CAS  Google Scholar 

  79. A. N. Grundy, B. Hallstedt, and L. J. Gauckler, Solid State Ionics 173, 17 (2004).

    Article  CAS  Google Scholar 

  80. R. A. De Souza, M. S. Islam, and E. Ivers-Tiffe, J. Mater. Chem. 9, 1621 (1999).

    Article  Google Scholar 

  81. K. Nakamura, in Mixed Ionic Electronic Perovskites for Advanced Energy Systems (Kluwer Academic, Boston, Dordrecht, London, 2003), p. 191.

    Google Scholar 

  82. B. C. Tofield and W. R. Scott, J. Solid State Chem. 10, 183 (1974).

    Article  CAS  Google Scholar 

  83. J. A. M. Roosmalen and E. H. P. Cordfunke, J. Solid State Chem. 110, 106 (1994).

    Article  Google Scholar 

  84. J. A. M. Roosmalen, E. H. P. Cordfunke, R. B. Helm- holdt, and H. W. Zandbrg, J. Solid State Chem. 110, 100 (1994).

    Article  Google Scholar 

  85. J. F. Mitchell, D. N. Argyriou, C. D. Potter, et al., Phys. Rev. B 54, 6172 (1996).

    Article  CAS  Google Scholar 

  86. J. A. Alonso, M. J. Martinez-Lope, M. T. Casais, et al., J. Mater. Chem. 7, 2139 (1997).

    Article  CAS  Google Scholar 

  87. Q. Huang, A. Santoro, J. W. Lynn, et al., Phys. Rev. B 55, 14987 (1997).

    Article  CAS  Google Scholar 

  88. C. Roy and R. C. Budhani, J. Appl. Phys. 85, 3124 (1999).

    Article  CAS  Google Scholar 

  89. S. Yoon, H. L. Liu, G. Schollerer, et al., Phys. Rev. B 58, 2795 (1998).

    Article  CAS  Google Scholar 

  90. E. Granado, N. O. Moreno, A. Garcia, et al., Phys. Rev. B 58, 11435 (1998).

    Article  CAS  Google Scholar 

  91. M. V. Abrashev, A. P. Litvinchuk, R. L. Meng, et al., Phys. Rev. B 59, 4146 (1999).

    Article  CAS  Google Scholar 

  92. M. N. Iliev, M. V. Abrashev, H.-G. Lee, et al., Phys. Rev. B 57, 2872 (1998).

    Article  CAS  Google Scholar 

  93. L. Martin-Carron and A. de Andres, J. Alloy Comp. 323–324, 417 (2001).

    Article  Google Scholar 

  94. V. A. Amelitchev and B. Guttler, Phys. Rev. B 63, 104430 (2001).

    Article  CAS  Google Scholar 

  95. L. Martin-Carron, A. de Andres, M. J. Martinez-Lopez, et al., J. Alloy Comp. 323–324, 494 (2001).

    Article  Google Scholar 

  96. V. B. Podobedov, A. Weber, D. B. Romero, et al., Phys. Rev. B 58, 43 (1998).

    Article  CAS  Google Scholar 

  97. A. E. Pantoja, H. J. Trodahl, A. Fainstein, et al., Phys. Rev. B 63, 132406 (2001).

    Article  CAS  Google Scholar 

  98. M. J. Akhtar, C. R. A. Catlow, B. Slater, et al., Chem. Mater. 18, 1552 (2006).

    Article  CAS  Google Scholar 

  99. M. V. Abrashev, J. Backstrom, and L. Borjesson, Phys. Rev. B 64, 144429 (2001).

    Article  CAS  Google Scholar 

  100. V. Perebeinos and P. Allen, Phys. Rev. B 64, 85118 (2001).

    Article  CAS  Google Scholar 

  101. R. Seshari, M. Hervieu, C. Martin, et al., Chem. Mater. 9, 1778 (1997).

    Article  Google Scholar 

  102. T. Negas and R. S. Roth, J. Solid State Chem. 3, 323 (1971).

    Article  CAS  Google Scholar 

  103. A. Wold and R. Arnott, J. Phys. Chem. Solids 9, 176 (1959).

    Article  CAS  Google Scholar 

  104. J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, Phys. Rev. 124, 373 (1961).

    Article  CAS  Google Scholar 

  105. T. Negas and R. S. Roth, J. Solid State Chem. 1, 409 (1970).

    Article  Google Scholar 

  106. I. Danilenko, T. Konstantinova, G. Volkova, et al., in Mixed Ionic Electronic Perovskites for Advanced Energy Systems, Ed. by N. Orlovskaya and N. Browing (Kluwer Academic, Boston, Dordrecht, London, 2003), p. 211.

    Google Scholar 

  107. S. F. Dubinin, V. E. Arkhipov, V. D. Parkhomenko, et al., Phys. Met. Metallogr. 99, 62 (2005).

    Google Scholar 

  108. T. G. Kuznetsova and V. A. Sadykov, Kinet. Catal. 49, 840 (2008).

    Article  CAS  Google Scholar 

  109. T. G. Kuznetsova, V. A. Sadykov, E. M. Moroz, et al., Stud. Surf. Sci. Catal. 143, 659 (2002).

    Article  CAS  Google Scholar 

  110. V. A. Sadykov, T. G. Kuznetsova, A. V. Simakov, et al., Mater. Res. Soc. Symp. Proc. 751, Z3.27.1 (2003).

    Google Scholar 

  111. V. A. Sadykov, N. N. Bulgakov, V. S. Muzykantov, et al., in Mixed Ionic Electronic Conducting Perovskites for Advanced Energy Systems, Ed. by N. Orlovskaya and N. Browing (Kluwer Academic, Boston, Dordrecht, London, 2004), p. 49.

    Google Scholar 

  112. T. Kuznetsova, V. Sadykov, L. Batuev, et al., React. Kinet. Catal. Lett. 86, 249 (2005).

    Article  CAS  Google Scholar 

  113. L. Ch. Batuev, T. G. Kuznetsova, V. A. Sadykov, et al., in Proceedings of the International School-Conference of Young Scientists on Physics and Chemistry of Nanomaterials (Tomsk, 2005), p. 528.

  114. H. G. Kim, D. W. Hwang, S. W. Bae, et al., Catal. Lett. 91, 193 (2003).

    Article  CAS  Google Scholar 

  115. K. H. Kim, J. Y. Gu, H. S. Choi, et al., Phys. Rev. Lett. 77, 1877 (1996).

    Article  CAS  Google Scholar 

  116. M. Popa, J. Frantti, and M. Kakihana, Solid State Ionics 154–155, 135 (2002).

    Article  Google Scholar 

  117. Yu. D. Tret’yakov, Solid-State Reactions (Khimiya, Moscow, 1978) [in Russian].

    Google Scholar 

  118. T. Ishigaki, S. Yamauchi, K. Kishio, et al., J. Solid State Chem. 73, 179 (1988).

    Article  CAS  Google Scholar 

  119. M. S. Islam, M. Cherry, and C. R. A. Catlow, J. Solid State Chem. 124, 230 (1996).

    Article  CAS  Google Scholar 

  120. M. Cherry, M. S. Islam, and C. R. A. Catlow, J. Solid State Chem. 118, 125 (1995).

    Article  CAS  Google Scholar 

  121. M. Iwamoto, Y. Yoda, N. Yamazoe, and T. Selyama, J. Phys. Chem. 82, 2564 (1978).

    Article  CAS  Google Scholar 

  122. V. A. Matyshak, V. A. Sadykov, T. G. Kuznetsova, et al., Kinet. Catal. 47, 400 (2006).

    Article  CAS  Google Scholar 

  123. C. Felser, R. Seshadri, A. Leist, and W. Tremel, J. Mater. Chem. 8, 787 (1998).

    Article  CAS  Google Scholar 

  124. S. Royer, D. Duprez, and S. Kaliaguine, J. Catal. 234, 364 (2005).

    Article  CAS  Google Scholar 

  125. G. K. Boreskov, Theory and Practice of Catalysis (Nauka, Novosibirsk, 1987) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Kuznetsova.

Additional information

Original Russian Text © T.G. Kuznetsova, V.A. Sadykov, V.V. Lunin, 2012, published in Zhurnal Fizicheskoi Khimii, 2012, Vol. 86, No. 4, pp. 686–701.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, T.G., Sadykov, V.A. & Lunin, V.V. Nanocomposite structure and reactivity of perovskites based on lanthanum manganites. Russ. J. Phys. Chem. 86, 606–620 (2012). https://doi.org/10.1134/S0036024412040152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024412040152

Keywords

Navigation