Skip to main content
Log in

Monte Carlo simulation study of melittin: Protein folding and temperature dependence

  • Structure of Chemical Compounds, including Condensed Media
  • Published:
Russian Journal of Physical Chemistry Aims and scope Submit manuscript

Abstract

The tetramerization of melittin, a 26-amino-acid peptide, is considered as a model for protein folding. The Monte Carlo simulation was used to study the folding arrangement of melittin, and the results are compared with the experiment. An acceptance rate of 50% for new configurations is achieved by using ranges of ±0.001 Å for the translations and ±15°C for the rotations. Around 311 K, the folded structure of the protein has the greatest stability; the range from −40 to −80 shows the best ϕ angles for melittin. The final optimized structure of melittin strongly depends on the temperature. The melittin tetramer is found to have a temperature of maximum stability ranging from 35.5 to 43°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Quay and C. C. Condie, Biochemistry 22, 659 (1983).

    Google Scholar 

  2. T. C. Terwillinger and D. Eisenberg, J. Biol. Chem. 257, 6010 (1982).

    Google Scholar 

  3. T. C. Terwillinger and D. Eisenberg, J. Biol. Chem. 257, 6016 (1982).

    Google Scholar 

  4. F. Inagaki, I. Shimada, K. Kawaguchi, et al., Biochemistry 28, 5985 (1989).

    Article  CAS  Google Scholar 

  5. R. Bazzo, M. J. Tappin, A. Pastore, et al., Eur. J. Biochem. 173, 139 (1988).

    Article  CAS  Google Scholar 

  6. M. Iwadate, T. Asakura, and M. P. Williamson, Eur. J. Biochem. 257, 479 (1998).

    Article  CAS  Google Scholar 

  7. K. Ramalingam, S. Aimoto, and J. Bello, Biopolymers 32, 981 (1992).

    Article  CAS  Google Scholar 

  8. M. van Veen, G. N. Georgiou, A. F. Drake, and R. J. Cherry, Biochem. J. 305, 7857 (1995).

    Google Scholar 

  9. Y. Sakakibara, M. Brown, R. Hughey, et al., Nucleic Acids Res. 22, 5112 (1994).

    CAS  Google Scholar 

  10. E. Habermann and J. Jentsch, Physiol. Chem. 348, 37 (1967).

    CAS  Google Scholar 

  11. W. Wilcox and D. Eisenberg, Protein Sci. 1, 641 (1992).

    Article  CAS  Google Scholar 

  12. A. P. Demchenko, A. S. Ladokhin, E. G. Kostrzhewskaya, and T. L. Dibrova, Mol. Biol. 21, 663 (1987).

    CAS  Google Scholar 

  13. J. F. Faucon, J. Dufourcq, and C. Lussan, FEBS Lett. 102, 187 (1979).

    Article  CAS  Google Scholar 

  14. M. Smoluch, M. Gorseling, C. Gooijer, and G. Zwan, J. Fluoresc. 14(1), 37 (2004).

    Article  CAS  Google Scholar 

  15. K. A. Dill, Biochemistry 29, 71337 (1990).

    Article  Google Scholar 

  16. T. E. Creighton, Protein Folding (W. H. Freeman, New York, 1992), pp. 1–547.

    Google Scholar 

  17. J.-L. Popot, Curr. Opin. Struct. Biol. 3, 532 (1993).

    Article  CAS  Google Scholar 

  18. S.H. White, W.C. Wimley, Curr. Opin. Struct. Biol. 4, 79 (1994).

    Article  CAS  Google Scholar 

  19. Membrane Protein Structure: Experimental Approaches, Ed. by S. H. White (Oxford Univ., Oxford, 1994), pp. 1–359.

    Google Scholar 

  20. D. C. Rees, A. J. Chirino, K.-H. Kim, and H. Komiya, in Membrane Protein Structure: Experimental Approaches, Ed. by S. H. White (Oxford Univ., Oxford, 1994), pp. 3–26.

    Google Scholar 

  21. F. M. Richards, in Protein Folding, Ed. by: T. E. Creighton (W. H. Freeman, New York, 1992), pp. 1–58.

    Google Scholar 

  22. P.L. Privalov, in Protein Folding, Ed. by: T.E. Creighton (W. H. Freeman, New York, 1992), pp. 83–126.

    Google Scholar 

  23. C. N. Pace, Methods Enzymol. 131, 266 (1986).

    Article  CAS  Google Scholar 

  24. T. Haltia and E. Freire, Biochim. Biophys. Acta 1241, 295 (1995).

    Google Scholar 

  25. K. Ramalingam, J. Bello, and S. Aimoto, FEBS Lett. 295, 200 (1991).

    Article  CAS  Google Scholar 

  26. K. Niefind and D. Schomburg, J. Mol. Biol. 219, 481 (1991).

    Article  CAS  Google Scholar 

  27. Y. Sugita, A. Kitao, and Y. Okamoto, J. Chem. Phys. 113, 6042 (2000).

    Article  CAS  Google Scholar 

  28. E. Lyman, F. M. Ytreberg, and D. M. Zuckerman, Phys. Rev. Lett. (in press).

  29. N. Rathore and J. de Pablo, J. Chem. Phys. 116, 7225 (2002).

    Article  CAS  Google Scholar 

  30. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, et al., J. Comput. Chem. 4, 187 (1983).

    Article  CAS  Google Scholar 

  31. N. Metropolis, A. W. Rosenbulth, M. N. Rosenbulth, et al., J. Chem. Phys. 21, 1087 (1953).

    Article  CAS  Google Scholar 

  32. P. J. Steinbach, Proteins, p. 6656 (2004).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monajjemi, M., Ketabi, S. & Amiri, A. Monte Carlo simulation study of melittin: Protein folding and temperature dependence. Russ. J. Phys. Chem. 80 (Suppl 1), S55–S62 (2006). https://doi.org/10.1134/S0036024406130103

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024406130103

Keywords

Navigation