Skip to main content
Log in

Materials of Tin-Based Negative Electrode of Lithium-Ion Battery

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Among high-capacity materials for the negative electrode of a lithium-ion battery, Sn stands out due to a high theoretical specific capacity of 994 mA h/g and the presence of a low-potential discharge plateau. However, a significant increase in volume during the intercalation of lithium into tin leads to degradation and a serious decrease in capacity. An efficient method to overcome this drawback is to create composites with nickel or carbon to prevent the occurrence of microstresses. Powders of Sn–Ni samples were produced by the reduction of metals in the liquid phase and analyzed by X-ray powder diffraction analysis. A Sn/carbon nanotubes powder was obtained by heat treatment in a vacuum and studied by scanning electron microscopy. The electrochemical properties of the material were investigated by chronopotentiometry in a three-electrode electrochemical cell. The Sn/carbon nanotube composite material has a much higher capacity than tin nanopowders when cycling at a current density of ~0.1 A/g. It follows from this that the former has better electrochemical properties and can be used as a negative electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. Zubi, R. Dufo-López, M. Carvalho, et al., Renew. Sustain. Energy Rev. 89, 292 (2018). https://doi.org/10.1016/j.rser.2018.03.002

    Article  Google Scholar 

  2. W. J. Zhang, J. Power Sources 196, 13 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020

    Article  CAS  Google Scholar 

  3. R. Ma, Z. Lu, S. Yang, et al., J. Solid State Chem. 196, 536 (2012). https://doi.org/10.1016/j.jssc.2012.07.015

    Article  CAS  Google Scholar 

  4. L. Xue, G. Xu, Y. Li, et al., ACS Appl. Mater. Interfaces 5, 21 (2013). https://doi.org/10.1021/am3027597

    Article  CAS  PubMed  Google Scholar 

  5. M. J. Armstrong, C. O’Dwyer, W. J. Macklin, et al., Nano Res. 7, 1 (2014). https://doi.org/10.1007/s12274-013-0375-x

    Article  CAS  Google Scholar 

  6. H. Zhao, C. Yin, H. Guo, et al., J. Power Sources 174, 916 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.143

    Article  CAS  Google Scholar 

  7. Z. Li, Q. Yin, W. Hu, et al., J. Mater. Sci. 54, 9025 (2019). https://doi.org/10.1007/s10853-019-03539-z

    Article  CAS  Google Scholar 

  8. Y. Hu, Q. R. Yang, J. Ma, et al., Electrochim. Acta 186, 271 (2015). https://doi.org/10.1016/j.electacta.2015.10.185

    Article  CAS  Google Scholar 

  9. G. Derrien, J. Hassoun, S. Panero, et al., Adv. Mater. 19, 2336 (2007). https://doi.org/10.1002/adma.200700748

    Article  CAS  Google Scholar 

  10. S. Liang, X. Zhu, P. Lian, et al., J. Solid State Chem. 184, 1400 (2011). https://doi.org/10.1016/j.jssc.2011.03.052

    Article  CAS  Google Scholar 

  11. A. R. Kamali and D. J. Fray, Rev. Adv. Mater. Sci. 27, 14 (2011).

    CAS  Google Scholar 

  12. J. W. Park, J. Y. Eom, and H. S. Kwon, Electrochem. Commun. 11, 596 (2009). https://doi.org/10.1016/j.elecom.2008.12.022

    Article  CAS  Google Scholar 

  13. Z. P. Guo, Z. W. Zhao, H. K. Liu, et al., Carbon 43, 1392 (2005). https://doi.org/10.1016/j.carbon.2005.01.008

    Article  CAS  Google Scholar 

  14. N. Li, C. R. Martin, and B. Scrosati, 2 98, 240 (2001).

  15. J. O. Besenhard, J. Yang, and M. Winter, J. Power Sources 68, 87 (1997). https://doi.org/10.1016/S0378-7753(96)02547-5

    Article  CAS  Google Scholar 

  16. J. Hassoun, S. Panero, P. Simon, et al., Adv. Mater. 19, 1632 (2007). https://doi.org/10.1002/adma.200602035

    Article  CAS  Google Scholar 

  17. S. Liu, Q. Li, Y. Chen, et al., 2 478, 694. https://doi.org/10.1016/j.jallcom.2008.11.159

  18. C. Kim, M. Noh, M. Choi, et al., Chem. Mater. 17, 3297 (2005). https://doi.org/10.1021/cm048003o

    Article  CAS  Google Scholar 

  19. J. Hassoun, G. Derrien, S. Panero, et al., Adv. Mater. 20, 3169 (2008). https://doi.org/10.1002/adma.200702928

    Article  CAS  Google Scholar 

  20. F. Ke, HuangL. Sheng, and H. Jiang, Hong, et al., Electrochem. Commun. 9, 228 (2007). https://doi.org/10.1016/j.elecom.2006.07.040

    Article  CAS  Google Scholar 

  21. Y. X. Wang, L. Huang, Y. Q. Chang, et al., Electrochem. Commun. 12, 1226 (2010). https://doi.org/10.1016/j.elecom.2010.06.025

    Article  CAS  Google Scholar 

  22. N. R. Shin, Y. M. Kang, M. S. Song, et al., J. Power Sources 186, 201 (2009). https://doi.org/10.1016/j.jpowsour.2008.09.095

    Article  CAS  Google Scholar 

  23. C. Tan, G. Qi, Y. Li, et al., J. Alloys Compd. 574, 206 (2013). https://doi.org/10.1016/j.jallcom.2013.03.291

    Article  CAS  Google Scholar 

  24. L. Huang, H. B. Wei, F. S. Ke, et al., Electrochim. Acta 54, 2693 (2009). https://doi.org/10.1016/j.electacta.2008.11.044

    Article  CAS  Google Scholar 

  25. L. Huang, J. S. Cai, Y. He, et al., Electrochem. Commun. 11, 950 (2009). https://doi.org/10.1016/j.elecom.2009.02.032

    Article  CAS  Google Scholar 

  26. R. Thomas, K. Y. Rao, and G. M. Rao, Electrochim. Acta 108, 458 (2013). https://doi.org/10.1016/j.electacta.2013.06.109

    Article  CAS  Google Scholar 

  27. J. Wang, C. Y. Wang, C. O. Too, et al., J. Power Sources 161, 1458 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.038

    Article  CAS  Google Scholar 

  28. L. Jabbour, M. Destro, D. Chaussy, et al., Compos. Sci. Technol. 87, 232 (2013). https://doi.org/10.1016/j.compscitech.2013.07.029

    Article  CAS  Google Scholar 

  29. G. Du, C. Zhong, P. Zhang, et al., Electrochim. Acta 55, 2582 (2010). https://doi.org/10.1016/j.electacta.2009.12.031

    Article  CAS  Google Scholar 

  30. J. Liu, Y. Wen, P. A. Van Aken, et al., Nano Lett. 14, 6387 (2014). https://doi.org/10.1021/nl5028606

    Article  CAS  PubMed  Google Scholar 

  31. X. Dong, W. Liu, X. Chen, et al., Chem. Eng. J. 350, 791 (2018). https://doi.org/10.1016/j.cej.2018.06.031

    Article  CAS  Google Scholar 

  32. J. Hassoun, S. Panero, and B. Scrosati, J. Power Sources 160, 1336 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.068

    Article  CAS  Google Scholar 

  33. Yang Min-Ge, Wang Jun-Bo, Liu Ying, and Y. L. Zhu Wen-Qing, Appl. Chem. Ind. 36, 848 (2007).

Download references

ACKNOWLEDGMENTS

We thank the academic staff of the Shenzhen MSU-BIT University and are grateful to the laboratory personnel for making analyses of the materials and to the supervisors for supervising the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zhou.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Chekannikov, A.A., Semenenko, D.A. et al. Materials of Tin-Based Negative Electrode of Lithium-Ion Battery. Russ. J. Inorg. Chem. 67, 1488–1494 (2022). https://doi.org/10.1134/S0036023622090029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622090029

Keywords:

Navigation