Skip to main content
Log in

Low-Temperature Underwater Plasma as an Instrument to Manufacture Inorganic Nanomaterials

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The synthetic method used to manufacture nanostructures affects the properties of the product material. Traditional preparative methods require further purification of the product compounds from unreacted precursors and synthesis by-products and their recycling. The combination of low-temperature plasma generated between two metal electrodes and distilled water avoids those disadvantages. Here, the experience of using in-solution burning plasma in the synthesis of nanostructured inorganic materials is generalized. The structures manufactured with electrodes made of one or two materials have been studied. The thus manufactured nanostructures were characterized using scanning electron microscopy and X-ray powder diffraction. It has been found that oxide nanostructures with metals in different oxidation states can be manufactured under the underwater plasma conditions. An option to produce metal–polymer nanocomposites, doped oxide nanostructures, mixed oxides, and nanoalloys has been shown. A formation mechanism of metal oxides in the plasma zone has been suggested. The results of using the manufactured nanomaterials as photocells, sorbents of organic and inorganic contaminants, and bactericidal agents are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I. Adamovich, S. D. Baalrud, A. Bogaerts, et al., J. Phys. D: Appl. Phys. 50, 323001 (2017).

    Article  CAS  Google Scholar 

  2. C. Hou, M. Zhang, T. Kasama, et al., Adv. Mater. 28, 4097 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. N. A. Bulychev, M. A. Kazaryan, L. L. Chaikov, et al., Bull. Lebedev Phys. Inst. 41, 264 (2014).

    Article  Google Scholar 

  4. S. C. Singh, R. K. Swarnkar, and R. Gopal, J. Nanosci. Nanotechnol. 9, 5367 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. T. Sasaki, Y. Shimizu, and N. Koshizaki, J. Photochem. Photobiol. A 182, 335 (2006).

    Article  CAS  Google Scholar 

  6. A. A. Ashkarran, J. Cluster. Sci. 22, 233 (2011).

    Article  CAS  Google Scholar 

  7. A. V. Khlyustova, N. A. Sirotkin, A. S. Krayev, et al., Plasma Sci. Technol. 21, 025505 (2019).

    Article  CAS  Google Scholar 

  8. N. A. Sirotkin, A. V. Khlyustova, V. A. Titov, et al., Plasma Chem. Plasma Process. 40, 571 (2020).

    Article  CAS  Google Scholar 

  9. K. Petcharoen and A. Sirivat, Mater. Sci. Eng. 177, 421 (2012).

    Article  CAS  Google Scholar 

  10. A. J. Ahamed and P. V. Kumar, J. Chem. Pharm. Res. 8, 624 (2016).

    CAS  Google Scholar 

  11. E. Cherian, A. Rajan, and G. Baskar, Int. J. Modern Sci. Technol. 1, 17 (2016).

    Google Scholar 

  12. A. N. P. Madathil, K. A. Vanaja, and M. K. Jayaraj, Nanophotonic Mater. IV 6639, 66390J (2007).

    Article  Google Scholar 

  13. M. Panahi-Kalamuei, S. Alizade, M. Mousavi-Kamazani, et al., J. Ind. Eng. Chem. 21, 1301 (2015).

    Article  CAS  Google Scholar 

  14. A. Yan, X. Liu, G. Qiu, et al., J. Alloys Compd. 458, 487 (2008).

    Article  CAS  Google Scholar 

  15. D. Mishra, R. Arora, S. Lahiri, et al., Prot. Met. Phys. Chem. Surf. 50, 628 (2014).

    Article  CAS  Google Scholar 

  16. R. M. Alwan, Q. A. Kadhim, K. M. Sahan, et al., Nanosci. Nanotechnol. 5, 1 (2015).

    Google Scholar 

  17. M. Alagiri, S. Ponnusamy, and C. Muthamizhchelvan, J. Mater. Sci.: Mater. Electron 23, 728 (2012).

    CAS  Google Scholar 

  18. M. Parashar, V. K. Shukla, and R. Singh, J. Mater. Sci.: Mater. Electron. 31, 3729 (2020).

    CAS  Google Scholar 

  19. D. A. Shutov, V. V. Rybkin, A. N. Ivanov, and K. V. Smirnova, High Energy Chem. 51, 65 (2017).

    Article  CAS  Google Scholar 

  20. T. A. Kareem and A. A. Kaliani, Ionics 18, 315 (2012).

    Article  CAS  Google Scholar 

  21. A. Allagui, E. A. Baranova, and R. Wuthrich, Electrochim. Acta 93, 137 (2013).

    Article  CAS  Google Scholar 

  22. N. Shirai, S. Uchida, and F. Tochikubo, Jpn. J. Appl. Phys. 53, 046202 (2014).

    Article  CAS  Google Scholar 

  23. G. Saito and T. Akiyama, J. Nanomater. 16, 299 (2015).

    Google Scholar 

  24. D. A. Shutov, A. N. Ivanov, A. V. Rakovskaya, et al., J. Phys. D: Appl. Phys. 53, 445202 (2020).

    Article  CAS  Google Scholar 

  25. D. A. Shutov, K. V. Smirnova, M. V. Gromov, et al., Plasma Chem. Plasma Process. 38, 107 (2018).

    Article  CAS  Google Scholar 

  26. V. I. Yukhvid, Self-Propagating High-Temperature Synthesis: Theory and Practice (Territoriya, Chernogolovka, 2001) [in Russian].

  27. A. Khlyustova, N. Sirotkin, A. Kraev, et al., Materialia 16, 101081 (2021).

    Article  CAS  Google Scholar 

  28. A. Khlyustova, N. Sirotkin, V. Titov, and A. Agafonov, Curr. Appl. Phys. 20, 1396 (2020).

    Article  Google Scholar 

  29. A. V. Khlyustova, N. A. Sirotkin, A. S. Kraev, et al., Plasma Chem. Plasma Process. 41, 643 (2021).

    Article  CAS  Google Scholar 

  30. C. N. R. Rao, K. Biswas, K. S. Subrahmanyam, and A. Govindaraj, J. Mater. Chem. 19, 2457 (2009).

    Article  CAS  Google Scholar 

  31. B. K. Saikia, R. K. Boruah, and P. K. Gogoi, J. Chem. Sci. 121, 103 (2009).

    Article  CAS  Google Scholar 

  32. A. Khlyustova, N. Sirotkin, V. Titov, and A. Agafonov, J. Alloys Compd. 858, 157664 (2021).

    Article  CAS  Google Scholar 

  33. X. Yu, T. J. Marks, and A. Facchetti, Nature Mater. 15, 383 (2016).

    Article  CAS  Google Scholar 

  34. W. Wu, M. Wang, J. Ma, et al., Adv. Electron. Mater. 4, 1800185 (2018).

    Article  CAS  Google Scholar 

  35. Z. M. Dang, J. K. Yuan, S. H. Yao, and R. J. Liao, Adv. Mater. 25, 6334 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. G. A. Salvatore, N. Munzenrieder, T. Kinkeldei, et al., Nature Commun. 5, 1 (2014).

    Article  CAS  Google Scholar 

  37. N. A. Sirotkin, D. L. Gurina, A. V. Khlyustova, et al., Plasma Process. Polym. 18, 2000169 (2021).

    Article  CAS  Google Scholar 

  38. A. Khlyustova, N. Sirotkin, A. Kraev, et al., J. Appl. Polym. Sci. 138, 51174 (2021).

    Article  CAS  Google Scholar 

  39. V. Titov, D. Nikitin, I. Naumova, et al., Materials 13, 4821 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  40. A. Khlyustova, N. Sirotkin, T. Kusova, et al., Mater. Adv. 1, 1193 (2020).

    Article  CAS  Google Scholar 

  41. A. Khlyustova, N. Sirotkin, A. Kraev, et al., J. Chem. Technol. Biotechnol. 96, 1125 (2021).

    Article  CAS  Google Scholar 

  42. A. Khlyustova, N. Sirotkin, A. Kraev, et al., Dalton Trans. 49, 6270 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was fulfilled in the frame of the State Assignments of the Ministry of Science and Education (No. 0092-2019-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Khlyustova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agafonov, A.V., Sirotkin, N.A., Titov, V.A. et al. Low-Temperature Underwater Plasma as an Instrument to Manufacture Inorganic Nanomaterials. Russ. J. Inorg. Chem. 67, 253–261 (2022). https://doi.org/10.1134/S0036023622030020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622030020

Keywords:

Navigation