Skip to main content
Log in

Optical and EPR Spectroscopy of Manganese Ions in Fluorozirconate Glasses

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The EPR and luminescence spectra of fluorozirconate and fluorochlorozirconate glasses doped with various manganese compounds were studied to determine the oxidation state of manganese ions and the structure of their distribution. The luminescence spectra of both the fluorozirconate and the fluorochlorozirconate glasses showed the presence of only Mn2+ ions due to the 4T1(G) → 6A1 transition, regardless of the oxidation state of the manganese ions in the initial dopant compound. In the fluorozirconate glasses, Mn2+ ions have a green emission band at 550 nm, which is shifted to the red region to 615 nm after the substitution of chlorine for a part of the fluorine in the glass. The ratio of the content of free manganese ions to the content of ions in clusters in the synthesized glasses was investigated. It was determined that manganese ions in the glasses are mainly aggregated to form clusters, and an increase in the activator concentration leads to a decrease of the fraction of free ions. The differences in luminescence and EPR spectra between the fluorozirconate and fluorochlorozirconate glasses are explained by a change in the structure of the local environment of the manganese ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. A. Noginov and G. D. Loutts, J. Opt. Soc. Am. B: Opt. Phys. 16, 3 (1999). https://doi.org/10.1364/JOSAB.16.000003

    Article  CAS  Google Scholar 

  2. G. B. Loutts, M. Warren, L. Taylor, et al., Phys. Rev. B: Condens. Matter. 57, 3706 (1998). https://doi.org/10.1103/PhysRevB.57.3706

    Article  CAS  Google Scholar 

  3. Z. Zhou, N. Zhou, M. Xia, et al., J. Mater. Chem. C 4, 9143 (2016). https://doi.org/10.1039/C6TC02496C

    Article  CAS  Google Scholar 

  4. Y.-C. Lin, M. Karlsson, and M. Bettinelli, Top. Curr. Chem. 374, 21 (2016). https://doi.org/10.1007/s41061-016-0023-5

    Article  CAS  Google Scholar 

  5. S. Adachi, J. Lumin. 197, 119 (2018). https://doi.org/10.1016/j.jlumin.2018.01.016

    Article  CAS  Google Scholar 

  6. R. Hoshino, T. Nakamura, and S. Adachi, J. Solid State Sci. Technol. 5, R37 (2016). https://doi.org/10.1149/2.0151603jss

    Article  CAS  Google Scholar 

  7. D. Chen, Y. Zhou, and J. Zhong, RSC Adv. 6, 86285 (2016). https://doi.org/10.1039/C6RA19584A

  8. A. G. Paulusz, J. Electrochem. Soc. 120, 942 (1973). https://doi.org/10.1149/1.2403605

    Article  CAS  Google Scholar 

  9. Y. K. Xu and S. Adachi, J. Appl. Phys. 105, 013525 (2009). https://doi.org/10.1063/1.3056375

    Article  CAS  Google Scholar 

  10. D. T. Sviridov, R. K. Sviridova, and Yu. F. Smirnov, Optical Spectra of Transition Metal Ions in Crystals (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  11. A. E. Nosenko, R. Leshchuk, and B. V. Padlyak, Radiat. Eff. Defects Solids 135, 55 (1995). https://doi.org/10.1080/10420159508229805

    Article  CAS  Google Scholar 

  12. Q. Zhou, L. Dolgov, A. M. Srivastava, et al., J. Mater. Chem. C 6, 2652 (2018). https://doi.org/10.1039/C8TC00251G

    Article  CAS  Google Scholar 

  13. R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, et al., Solid State Commun. 108, 549 (1998). https://doi.org/10.1016/S0038-1098(98)00403-7

    Article  CAS  Google Scholar 

  14. H. Ohno, Phys. B (Amsterdam, Neth.) 376–377, 19 (2006). https://doi.org/10.1016/j.physb.2005.12.007

  15. A. H. Macdonald, P. Schiffer, and N. Samarth, Nat. Mater. 4, 195 (2005). https://doi.org/10.1038/nmat1325

    Article  CAS  Google Scholar 

  16. M. A. Zykin, T. G. Aminov, V. V. Minin, and N. N. Efimov, Russ. J. Inorg. Chem. 66, 113 (2021). https://doi.org/10.1134/S0036023621010137

    Article  CAS  Google Scholar 

  17. R. Verstraete, H. F. Sijbom, K. Korthout, et al., J. Mater. Chem. C 5, 10761 (2017). https://doi.org/10.1039/C7TC02992F

    Article  CAS  Google Scholar 

  18. Y. Tanabe and S. J. Sugano, Phys. Soc. Jpn. 9, 776 (1954). https://doi.org/10.1143/JPSJ.9.766

    Article  Google Scholar 

  19. M. A. Buñuel, R. Alcalá, and R. Cases, J. Phys.: Condens. Matter 10, 9343 (1998). https://doi.org/10.1088/0953-8984/10/41/016

    Article  Google Scholar 

  20. S. Kh. Batygov, M. N. Brekhovskikh, L. V. Moiseeva, et al., Inorg. Mater. 55, 1185 (2019). https://doi.org/10.1134/S0020168519110025

    Article  CAS  Google Scholar 

  21. S. Adachi, ECS J. Solid State Sci. Technol. 9, 016001 (2020). https://doi.org/10.1149/2.0022001JSS

    Article  CAS  Google Scholar 

  22. J. Li, J. Yan, D. Wen, et al., J. Mater. Chem. C 4, 8611 (2016). https://doi.org/10.1039/C6TC02695H

    Article  CAS  Google Scholar 

  23. M. N. Brekhovskikh, S. Kh. Batygov, V. N. Makhov, et al., Phys. Status Solidi B 257, 1900457 (2020). https://doi.org/10.1002/pssb.201900457

    Article  CAS  Google Scholar 

  24. Kerrington A. and E. McLachlan, Introduction to Magnetic Resonance with Applications to Chemistry and Chemical Physics (Harper and Row, New York, 1967).

    Google Scholar 

  25. E. I. Abdrashitova and G. T. Petrovskii, Dokl. AN SSSR 180, 166 (1968).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies in this work were made using the equipment of the Center for Shared Use of Physical Investigation Methods, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia; Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia; and Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.

Funding

This work was supported by the Russian Science Foundation (project no. 18-13-00407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Brekhovskikh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batygov, S.K., Brekhovskikh, M.N., Moiseeva, L.V. et al. Optical and EPR Spectroscopy of Manganese Ions in Fluorozirconate Glasses. Russ. J. Inorg. Chem. 66, 1577–1582 (2021). https://doi.org/10.1134/S0036023621100028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621100028

Keywords:

Navigation