Skip to main content
Log in

Cationic—Anionic Pd(II) Complexes with Adamantylimidazolium Cation: Synthesis, Structural Study, and MAO-Inhibiting Activity

  • Coordination Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

New cationic-anionic palladium(II) complexes have been prepared from adamantyl-substituted imidazolium salts and effect of structure of the adamantyl-substituted salts and synthesis conditions on the structure of these complexes with \({\rm{Pd}}({\rm{DMSO}}){\rm{Hal}}_3^ - \) (14), \({\rm{P}}{{\rm{d}}_2}{\rm{Br}}_6^{2 - }\) (5, 6), or \({\rm{PdCl}}_4^{2 - }\) (7) anions has been studied. A number of palladium(II) complexes active against monoamine oxidase B has been prepared, effect of composition and structure on their biological activity have been revealed. The structure of the complexes has been confirmed by X-ray diffraction analysis, a conductometric study of complex 1 has been performed. MAO-inhibiting activity of the obtained complexes has been found to be on the level of reference compounds: 17.6% of residual enzyme activity upon inhibition by complex 3 as compared with 16.9% for reference compound (selegiline). Complexes with bromine ligand show higher activity than those with chlorine ligand. The results of this study can be used in organometallic and bioinorganic chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Molnar, (Ed.) Palladium-Catalysed Coupling Reactions: Practical Aspects and Future Developments (Wiley-VCH, Weinheim, 2013). doi https://doi.org/10.1002/9783527648283

    Google Scholar 

  2. Li Hongbo, C. C. C. J. Seechurn, and T. J. Colacot, ACS Catal. 2, 1147 (2012). doi https://doi.org/10.1021/cs300082f

    Google Scholar 

  3. S. P. Nolan, N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis (Wiley-VCH, Weinheim, 2014). doi https://doi.org/10.1002/9783527671229

    Google Scholar 

  4. E. S. B. Kantchev, C. J. O’Brien, and M. G. Organ, Angew. Chem., Int. Ed. Engl. 46, 2768 (2007). doi https://doi.org/10.1002/anie.200601663

    Google Scholar 

  5. P. B. Dzhevakov, A. F. Asachenko, M. S. Nechaev, et al., Russ. Chem. Bull. 64, 890 (2014). doi https://doi.org/10.1007/s11172-014-0525-7

    Google Scholar 

  6. W. A. Herrmann, J. Schwarz, and M. G. Gardiner, Organometallics 18, 4082 (1999). doi https://doi.org/10.1021/om990326k

    Article  CAS  Google Scholar 

  7. W. A. Herrmann, C. P. Resinger, and M. Spiegler, J. Organomet. Chem. 557, 93 (1998). doi https://doi.org/10.1016/S0022-328X(97)00736-5

    Google Scholar 

  8. C. S. Linningher, E. Herdtweck, S. D. Hoffmann, and W. A. Herrmann, J. Mol. Struct. 890, 192 (2008). doi https://doi.org/10.1016/j.molstruc.2008.05.037

    Google Scholar 

  9. B. Sureshbabu, V. Ramkumar, and S. Sankararaman, Dalton Trans. 43, 10710 (2014). doi https://doi.org/10.1039/C4DT01112K

    Article  CAS  PubMed  Google Scholar 

  10. S. Hohloch, N. Deibel, D. Schweinfurth, et al., Eur. J. Inorg. Chem. 2014, 2131 (2014). doi https://doi.org/10.1002/ejic.201301339

    Google Scholar 

  11. J. C. Bernhammer, N. X. Chong, R. Jothibasu, et al., Organometallics 33, 3607 (2014). doi https://doi.org/10.1021/om500566n

    Google Scholar 

  12. H. V. Huynh and C.-S. Lee, Dalton Trans. 42, 6803 (2013). doi https://doi.org/10.1039/C3DT50237F

    Google Scholar 

  13. M. Heckenroth, E. Kluzer, A. Neels, and M. Albrecht, Angew. Chem., Int. Ed. Engl. 46, 6293 (2007). doi https://doi.org/10.1002/anie.200702199

    Google Scholar 

  14. M. Heckenroth, E. Kluser, A. Neels, and M. Albrecht, Dalton Trans., 6242 (2008). doi https://doi.org/10.1039/B812405A

    Google Scholar 

  15. A. A. Danopoulos, P. Braunstein, N. Stylianides, and M. Wesolek, Organometallics 30, 6514 (2011). doi https://doi.org/10.1021/om200951m

    Google Scholar 

  16. H. Song, N. Yan, Z. Fei, et al., Catalysis Today 183, 172 (2012). doi https://doi.org/10.1016/j.cattod.2011.12.008

    Google Scholar 

  17. Z. Lu and T. J. Williams, ACS Catalysis 6, 6670 (2016). doi https://doi.org/10.1021/acscatal.6b02101

    Google Scholar 

  18. V. Yu. Kukushkin, R. A. Vlasova, and Yu. L. Palzukhina, Zh. Prikl. Khim. 41, 2381 (1968).

    Google Scholar 

  19. A. Hazell, C. J. McKenzie, and L. P. Nielsen, Polyhedron 19, 1333 (2000). doi https://doi.org/10.1016/S0277-5387(00)00409-5

    Article  CAS  Google Scholar 

  20. D. Meyer, M. A. Taige, A. Zeller, et al., Organometallics 28, 2142 (2009). doi https://doi.org/10.1021/om8009238

    Google Scholar 

  21. V. V. Sharutin, V. S. Senchurin, and O. K. Sharutina, Russ. J. Inorg. Chem. 58, 543 (2013). doi https://doi.org/10.1134/S0036023613050203

    Google Scholar 

  22. C. Lang, K. Pahnke, C. Kiefer, et al., Polym. Chem. 4, 5466 (2013). doi https://doi.org/10.1039/C3PY90071A

    Google Scholar 

  23. D. Guest, V. H. Menezes Da Silva, A. P. De Lima Batista et al., Organometallics 34, 2463 (2015). doi https://doi.org/10.1021/om5012038

    Article  CAS  Google Scholar 

  24. H. V. Huynh, Y. Han, J. H. H. Ho, and G. K. Tan, Organometallics 25, 3267 (2006). doi https://doi.org/10.1021/om060151w

    Article  CAS  Google Scholar 

  25. Q.-X. Liu, A.-H. Chen, X.-J. Zhao, et al., CrystEng-Comm 13, 293 (2011). doi https://doi.org/10.1039/C0CE00142B

    Google Scholar 

  26. P. Buchalski, R. Pacholski, K. Chodkiewicz, et al., Dalton Trans. 44, 7169 (2015). doi https://doi.org/10.1039/C4DT03786C

    Google Scholar 

  27. S. K. Yen, L. L. Koh, H. V. Huynh, and T. S. A. Hor, Aust. J. Chem. 62, 1047 (2009). doi https://doi.org/10.1071/CH09196

    Google Scholar 

  28. D. Meyer, M. A. Taige, A. Zeller, et al., Organometallics 28, 2142 (2009). doi https://doi.org/10.1021/om8009238

    Google Scholar 

  29. F. Schroeter, J. Soellner, and T. Strassner, ACS Catal. 7, 3004 (2017). doi https://doi.org/10.1021/acscatal.6b03655

    Google Scholar 

  30. F. Schroeter and T. Strassner, Eur. J. Inorg. Chem. 2017, 4231 (2017). doi https://doi.org/10.1002/ejic.201701000

    Google Scholar 

  31. E. A. Baquero, G. F. Silbestri, P. Gómez-Sal, et al., Organometallics 32, 2814 (2013). doi https://doi.org/10.1021/om400228s

    Article  CAS  Google Scholar 

  32. E. A. Baquero, J. C. Flores, J. Perles, et al., Organometallics 33, 5470 (2014). doi https://doi.org/10.1021/om500753v

    Google Scholar 

  33. H. Buhl and C. Ganter, J. Organomet. Chem. 809, 74 (2016). doi https://doi.org/10.1016/j.jorganchem.2016.02.034

    Google Scholar 

  34. E. Borrè, G. Dahm, A. Aliprabdi, et al., Organometallics 33, 4374 (2014). doi https://doi.org/10.1021/om5003446

    Google Scholar 

  35. A. H. Velders, A. Bergamo, E. Alessio, et al., J. Med. Chem. 47, 1110 (2004). doi https://doi.org/10.1021/jm030984d

    Google Scholar 

  36. D. Musumeci, L. Rozza, A. Merlino, et al., Dalton Trans. 44, 13914 (2015). doi https://doi.org/10.1039/C5DT01105A

    Google Scholar 

  37. D. Schleicher, H. Leopold, and T. Strassner, J. Organomet. Chem. 829, 101 (2017). doi https://doi.org/10.1016/j.jorganchem.2016.10.036

    Google Scholar 

  38. A. Gautier and F. Cisnetti, Metallomics 4, 23 (2012). doi https://doi.org/10.1039/c1mt00123j

    Google Scholar 

  39. Ö. Karaca, S. M. Meier-Menches, A. Casini, and F. E. Kühn, Chem. Commun. 53, 8249 (2017). doi https://doi.org/10.1039/C7CC03074F

    Google Scholar 

  40. A. Schmidt, V. Molano, M. Hollering, et al., Chem.-Eur. J. 22, 2253 (2016). doi https://doi.org/10.1002/chem.201504930

    Google Scholar 

  41. A. G. Tikhomirov, N. A. Ivanova, O. S. Erofeeva, et al., Russ. J. Coord. Chem. 29, 489 (2003).

    Google Scholar 

  42. P. B. Gorbacheva, A. G. Tikhomirov, L. Yu. Dederer, et al., Pharm. Chem. J., 42, 53 (2008). doi https://doi.org/10.1007/s11094-008-0058-1

    Google Scholar 

  43. N. A. Kas’yanenko, E. V. Levykina, O. S. Erofeeva, et al., J. Struct. Chem. 50, 996 (2009). doi https://doi.org/10.1007/s10947-009-0148-2

    Google Scholar 

  44. I. A. Efimenko, O. N. Shishilov, N. A. Ivanova, et al., Russ. J. Coord. Chem. 38, 233 (2012). doi https://doi.org/10.1134/S1070328412020029

    Google Scholar 

  45. A. K. Grekhova, L. B. Gorbacheva, N. A. Ivanova, et al., Biochem. Moscow Suppl. Ser. B. 7, 226 (2013). doi https://doi.org/10.1134/S1990750813030050

    Google Scholar 

  46. Y. N. Nosova, I. V. Zenin, V. P. Maximova, et al., Bioinorg. Chem. Appl. 2017, 6 (2017). doi https://doi.org/10.1155/2017/4736321

    Google Scholar 

  47. State Registry of Medicinals (Meditsinskii sovet, Moscow, 2009), Vol. 2, Part 1, p. 568 [in Russian].

  48. M. S. Denisov, Candidate’s Dissertation in Chemistry (Perm, 2015).

  49. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Crystallogr. 42, 339 (2009). doi https://doi.org/10.1107/S0021889808042726

    Google Scholar 

  50. G. M. Sheldrick, Acta Crystallogr. A 64, 112 (2008). doi https://doi.org/10.1107/S0108767307043930

    Google Scholar 

  51. G. M. Sheldrick, Acta Crystallogr. C 71, 3 (2015). doi https://doi.org/10.1107/S2053229614024218

    Google Scholar 

  52. Mercury 3.3 (Build RC5), Cambridge Crystallographic Data Centre, 2013. https://doi.org/www.ccdc.cam.ac.uk/mercury/.

  53. U. Thull and B. Testa, Biochem. Pharmacol. 47, 2307 (1994). doi https://doi.org/10.1016/0006-2952(94)90271-2

    Google Scholar 

  54. J. M. Andrade, C. S. Passos, R. R. Dresch, et al., Brazil. Phcog. Mag. 10, s100 (2014). doi https://doi.org/10.4103/09731296.127354

    Article  PubMed  Google Scholar 

  55. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, J. Biol. Chem. 193, 265 (1951). https://doi.org/www.jbc.org/content/193/1/265.short.

    Google Scholar 

  56. B. M. F. Gonçalves, J. A. R. Salvador, S. Marín, and M. Cas-cante, Eur. J. Med. Chem. 114, 101 (2016). doi https://doi.org/10.1016/j.ejmech.2016.02.057

    Google Scholar 

  57. E. A. Litvin, G. B. Kolyvanov, and V. P. Zherdev, Farmokinetika i Farmodinamika 1, 18 (2012).

    Google Scholar 

  58. B. Neumüller, S. Chitsaz, and K. Dehnicke, Z. Anorg. Allg. Chem. 628, 523 (2002). doi https://doi.org/10.1002/1521-3749(200203)628:3<523:AID-ZAAC523>3.0.CO;2-C

    Google Scholar 

  59. N. Kuhn, M. Göhner, M. Steimann, and Nachti, Z. Kristallogr. NCS 214, 565 (1999). doi https://doi.org/10.1515/ncrs-1999-0483

    Google Scholar 

  60. X. Wang, Z. Fei, T. J. Geldbach, et al., Organometallics 27, 3971 (2008). doi https://doi.org/10.1021/om800355g

    Google Scholar 

  61. E. Silarska, A. M. Trzeciak, J. Pernak, and A. Skrzypcza, Appl. Catal., A 466, 216 (2013). doi j.apcata.2013.06.046

    Google Scholar 

  62. Z. Huang, F. Li, B. Chen, et al., ChemSusChem 6, 1337 (2013). doi https://doi.org/10.1002/cssc.201300289

    Google Scholar 

  63. C. J. Adams, M. Lusi, E. M. Mutambi, and A. G. Orpen, Chem. Commun. 51, 9632 (2015). doi https://doi.org/10.1039/C5CC02924D

    Google Scholar 

  64. V. V. Sharutin, O. K. Sharutina, V. S. Senchurin, and I. A. Il’chenko, Russ. J. Coord. Chem. 41, 262 (2015). doi https://doi.org/10.1134/S1070328415070088

    Google Scholar 

  65. S. Livingstone, Rhenium, Rhodium, Palladium, Osmium, Iridium, and Platinum (Pergamon, Oxford (UK), 1975), p. 215.

    Google Scholar 

  66. A. K. Lyashchenko, D. V. Loginova, and A. S. Lileev, Russ. J. Coord. Chem. 35, 633 (2009). doi https://doi.org/10.1134/S1070328409090012

    Google Scholar 

  67. H. Huang, N. Humbert, V. Bizet, et al., J. Organomet. Chem. 839, 15 (2017). doi https://doi.org/10.1016/j.jorganchem.2016.12.010

    Google Scholar 

  68. I. A. Efimenko, N. A. Ivanova, O. S. Erofeeva, et al., Russ. J. Coord. Chem. 35, 272 (2009). doi https://doi.org/10.1134/S107032840904007

    Google Scholar 

  69. I. A. Efimenko, A. V. Churakov, N. A. Ivanova, et al., Russ. J. Inorg. Chem. 62, 1469 (2017). doi https://doi.org/10.1134/S0036023617110043

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Denisov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, M.S., Dmitriev, M.V., Eroshenko, D.V. et al. Cationic—Anionic Pd(II) Complexes with Adamantylimidazolium Cation: Synthesis, Structural Study, and MAO-Inhibiting Activity. Russ. J. Inorg. Chem. 64, 56–67 (2019). https://doi.org/10.1134/S0036023619010054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619010054

Keywords

Navigation