Skip to main content
Log in

Structure and spectral and luminescence properties of the trinuclear zinc complex with (E)-5-((2,6-diethylphenylimino)methyl)-2-methylquinolin-8-ol: Experimental and DFT study

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Quantum chemical optimization of the equilibrium structure of the trinuclear zinc complex with (E)-5-((2,6-diethylphenylimino)methyl)-2-methylquinolin-8-ol at the density functional theory level followed by Bader analysis of the electron density distribution function was performed on the basis of X-ray diffraction data for the molecular crystals of the complex. Interpretation of the topological parameters of electron density in the critical points of the Zn–O and Zn–N coordination bonds was carried out and the energies of these bonds were estimated using the Espinosa formula. Calculations in terms of the non-stationary density functional theory were used to simulate the absorption spectra of the complex and the structure-forming quinoline ligand. The S 0S 1 transition subsequently responsible for generation of fluorescence is practically forbidden in the spectrum of the quinoline ligand and becomes allowed in the spectrum of the complex, which is observed experimentally as a fivefold enhancement of the quantum yield of fluorescence of the complex as compared with the ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Arai, N. Sugiyama, H. Masu, et al., Chem. Commun. 50, 8287 (2014).

    Article  CAS  Google Scholar 

  2. D. Dey, G. Kaur, A. Ranjani, et al., Eur. J. Inorg. Chem. 2014, 3350 (2014).

    Article  CAS  Google Scholar 

  3. X. Liu, P. Du, and R. Cao, Nat. Commun. 4, 2375 (2013).

    Google Scholar 

  4. D. J. D. Wilson, C. M. Beavers, and A. F. Richards, Eur. J. Inorg. Chem. 2012, 1130 (2012).

    Article  CAS  Google Scholar 

  5. B. Wang, A. P. Côté, and H. Furukawa, Nature 453, 207 (2008).

    Article  CAS  Google Scholar 

  6. F. Dumur, Synth. Met. 195, 241 (2014).

    Article  CAS  Google Scholar 

  7. G. V. Baryshnikov, B. F. Minaev, A. A. Korop, et al., Russ. J. Inorg. Chem. 58, 928 (2013).

    Article  CAS  Google Scholar 

  8. H. Xu, R. Chen, Q. Sun, et al., Chem. Soc. Rev. 43 (10), 3259 (2014).

    Article  CAS  Google Scholar 

  9. Q. Yan, L. Li, W. Li, et al., Spectrochim. Acta A 128, 790 (2014).

    Article  CAS  Google Scholar 

  10. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  11. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  12. N. Godbout, D. R. Salahub, J. Andzelm, et al., Can. J. Chem. 70, 560 (1992).

    Article  CAS  Google Scholar 

  13. C. Sosa, J. Andzelm, B. C. Elkin, et al., J. Phys. Chem. 96, 6630 (1992).

    Article  CAS  Google Scholar 

  14. M. M. Francl, W. J. Petro, W. J. Hehre, et al., J. Chem. Phys. 77, 3654 (1982).

    Article  CAS  Google Scholar 

  15. R. F. W. Bader, Atoms in Molecules. A Quantum Theory (Clarendon Press, Oxford, 1990).

    Google Scholar 

  16. E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett. 285, 170 (1998).

    Article  CAS  Google Scholar 

  17. E. Espinosa, I. Alkorta, and I. Rozas, Chem. Phys. Lett. 336, 457 (2001).

    Article  CAS  Google Scholar 

  18. I. S. Bushmarinov, K. A. Lyssenko, and M. Yu. Antipin, Russ. Chem. Rev. 78, 283 (2009).

    Article  CAS  Google Scholar 

  19. G. V. Baryshnikov, B. F. Minaev, V. A. Minaeva, et al., Russ. J. Gen. Chem. 81, 576 (2011).

    Article  CAS  Google Scholar 

  20. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

    Article  CAS  Google Scholar 

  21. S. Miertus, E. Scrocco, and J. Tomasi, Chem. Phys. 55, 117 (1981).

    Article  CAS  Google Scholar 

  22. S. I. Gorelsky, SWizard program, rev. 4.6, Univ. of Ottava, Canada, 2010.

    Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN09, rev. A.02, Gaussian, Inc., Wallingford, CT, 2009.

    Google Scholar 

  24. T. A. Keith, AIMAll (ver. 10.07.25), TK Gristmill Software, Overland Park KS, USA. www.aim.tkgristmill.com, 2010.

  25. V. A. Minaeva, B. F. Minaev, G. V. Baryshnikov, et al., Russ. J. Gen. Chem. 81, 2332 (2011).

    Article  CAS  Google Scholar 

  26. B. F. Minaev, G. V. Baryshnikov, A. A. Korop, et al., Opt. Spectrosc. 113, 298 (2012).

    Article  CAS  Google Scholar 

  27. B. F. Minaev, G. V. Baryshnikov, and A. A. Korop, Opt. Spectrosc. 114, 30 (2013).

    Article  CAS  Google Scholar 

  28. R. R. Valiev, E. N. Telminov, T. A. Solodova, et al., Spectrochim. Acta A 128, 137 (2014).

    Article  CAS  Google Scholar 

  29. Y. Hamada, T. Sano, M. Fujita, et al., Jpn. J. Appl. Phys. 32 (4A), L514 (1993).

    Article  CAS  Google Scholar 

  30. V. K. Shukla and J. Maitra, J. Mater. 2013,ID 690237 (2013).

    Google Scholar 

  31. X. Bing-she, H. Yu-ying, W. Hua, et al., Solid State Commun. 136, 318 (2005).

    Article  Google Scholar 

  32. L. S. Sapochak, F. E. Benincasa, R. S. Schofield, et al., J. Am. Chem. Soc. 124, 6119 (2002).

    Article  CAS  Google Scholar 

  33. L. S. Sapochak, A. Falkowitz, K. F. Ferris, et al., J. Phys. Chem. B 108, 8558 (2002).

    Article  Google Scholar 

  34. G. Yuan, Y. Huo, X. Nie, et al., Dalton. Trans. 42, 2921 (2013).

    Article  CAS  Google Scholar 

  35. T. S. Kim, T. Okubo, and T. Mitani, Chem. Mater. 15, 4949 (2003).

    Article  CAS  Google Scholar 

  36. S.-C. Lan and Y.-H. Liu, Spectrochim. Acta A 139, 49 (2015).

    Article  CAS  Google Scholar 

  37. M. Amati, S. Belviso, P. L. Cristinziano, et al., J. Phys. Chem. A 111, 13403 (2007).

    Article  CAS  Google Scholar 

  38. A. Kumar, A. K. Palai, R. Srivastava, et al., J. Organomet. Chem. 756, 38 (2014).

    Article  CAS  Google Scholar 

  39. S. Li, Y. Li, and J.-A. Zhang, Inorg. Chem. Commun. 20, 334 (2012).

    Article  CAS  Google Scholar 

  40. L. Li, X. Zhang, W. Zhang, et al., Spectrochim. Acta A 118, 1047 (2014).

    Article  CAS  Google Scholar 

  41. O. V. Kotova, S. V. Eliseeva, A. S. Averjushkin, et al., Russ. Chem. Bull. 57, 1880.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. T. Baryshnikova or Wen-Hua Sun.

Additional information

Original Russian Text © A.T. Baryshnikova, B.F. Minaev, G.V. Baryshnikov, Wen-Hua Sun, 2015, published in Zhurnal Neorganicheskoi Khimii, 2015, Vol. 60, No. 12, pp. 1703–1711.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baryshnikova, A.T., Minaev, B.F., Baryshnikov, G.V. et al. Structure and spectral and luminescence properties of the trinuclear zinc complex with (E)-5-((2,6-diethylphenylimino)methyl)-2-methylquinolin-8-ol: Experimental and DFT study. Russ. J. Inorg. Chem. 60, 1560–1567 (2015). https://doi.org/10.1134/S0036023615120050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023615120050

Keywords

Navigation