Skip to main content
Log in

Magnetization in Superconductor–Ferromagnetic Metal Bilayers Induced by the Inverse Proximity Effect

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Within the Green’s function formalism, the magnetization induced by the inverse proximity effect in bilayers containing a superconductor and a strongly spin-polarized ferromagnetic metal is studied. The Usadel equations written for the dirty superconductor model are solved with boundary conditions suitable for strongly spin-polarized ferromagnetic materials. The cases of near-critical temperatures and a weak proximity effect are considered. The dependences of the induced magnetization on the superconductor thickness, temperature, transparency of the superconductor–ferromagnet interface, and the spin mixing angle are studied. It is shown that the stronger the proximity effect, the weaker the inverse proximity effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and Applications,” Rev. Mod. Phys. 76, No. 2, 323–410 (2004).

    Article  Google Scholar 

  2. M. Eschrig, “Spin-polarized supercurrents for spintronics,” Phys. Today 64, No. 1, 43–49 (2011).

    Article  CAS  Google Scholar 

  3. M. Eschrig, “Spin-polarized supercurrents for spintronics: A review of current progress,” Rep. Prog. Phys. 78, No. 10, 104501 (2015).

    Article  Google Scholar 

  4. V. V. Ryazanov, V. A. Oboznov, A. Y. Rusanov, A. V. Veretennikov, A. A. Golubov, and J. Aarts, “Coupling of two superconductors through a ferromagnet: Evidence for a π junction,” Phys. Rev. Lett. 86, No. 11, 2427–2430 (2001).

    Article  CAS  Google Scholar 

  5. A. V. Vedyayev, N. V. Ryzhanova, and N. G. Pugach, “Critical current oscillations in S/F heterostructures in the presence of s–d scattering,” J. Magn. Magn. Mater. 305, No. 1, 53–56 (2006).

    Article  CAS  Google Scholar 

  6. N. Klenov, V. Kornev, A. Vedyayev, N. Ryzhanova, N. Pugach, and T. Rumyantseva, “Examination of logic operations with silent phase qubit,” J. Phys.: Conf. Ser. 97, 012037 (2008).

    Google Scholar 

  7. N. G. Pugach and A. I. Buzdin, “Magnetic moment manipulation by triplet josephson current,” Appl. Phys. Lett. 101, No. 24, 242602 (2012).

    Article  Google Scholar 

  8. D. M. Heim, N. G. Pugach, M. Y. Kupriyanov, E. Goldobin, D. Koelle, R. Kleiner, N. Ruppelt, M. Weides, and H. Kohlstedt, “The effect of normal and insulating layers on 0- π transitions in josephson junctions with a ferromagnetic barrier,” New J. Phys. 17, No. 11, 113022 (2015).

    Article  Google Scholar 

  9. A. Vedyayev, C. Lacroix, N. Pugach, and N. Ryzhanova, “Spin-valve magnetic sandwich in a josephson junction,” Europhys. Lett. 71, No. 4, 679–685 (2005).

    Article  CAS  Google Scholar 

  10. D. M. Heim, N. G. Pugach, M. Y. Kupriyanov, E. Goldobin, and D. Koelle, “Ferromagnetic planar josephson junction with transparent interfaces: A φ junction proposal,” J. Phys.: Condens. Matter 25, No. 21, 215701 (2013).

    CAS  Google Scholar 

  11. A. S. Vasenko, F. W. J. Hekking, and F. S. Bergeret, “Andreev current enhancement and subgap conductance of superconducting SFN hybrid structures in the presence of a small spin-splitting magnetic field,” Phys. Rev. B 86, No. 6, 060509 (2012).

    Article  Google Scholar 

  12. R. I. Salikhov, N. N. Garif’yanov, I. A. Garifullin, L. R. Tagirov, K. Westerholt, and H. Zabel, “Spin screening effect in superconductor/ferromagnet thin film heterostructures studied using nuclear magnetic resonance,” Phys. Rev. B 80, No. 21, 214523 (2009).

    Article  Google Scholar 

  13. J. Xia, V. Shelukhin, M. Karpovski, A. Kapitulnik, and A. Palevski, “Inverse proximity effect in superconductor-ferromagnet bilayer structures,” Phys. Rev. Lett. 102, No. 8, 087004 (2009).

    Article  Google Scholar 

  14. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Induced ferromagnetism due to superconductivity in superconductor-ferromagnet structures,” Phys. Rev. B 69, No. 17, 174504 (2004).

    Article  Google Scholar 

  15. R. I. Salikhov, I. A. Garifullin, N. N. Garif’yanov, L. R. Tagirov, K. Theis-Broehl, K. Westerholt, and H. Zabel, “Experimental observation of the inverse proximity effect in superconductor/ferromagnet layered structures,” 087003, 1–4 (2008). ArXiv: 0806.4104.

  16. Y. N. Khaydukov, V. L. Aksenov, Y. V. Nikitenko, K. N. Zhernenkov, B. Nagy, A. Teichert, R. Steitz, A. Rühm, and L. Bottyán, “Magnetic proximity effects in V/Fe superconductor/ferromagnet single bilayer revealed by waveguide-enhanced polarized neutron reflectometry,” J. Supercond. Novel Magn. 24, Nos. 1–2, 961–968 (2011).

    Article  CAS  Google Scholar 

  17. M. J. Wolf, C. Sürgers, G. Fischer, and D. Beckmann, “Spin-polarized quasiparticle transport in exchange-split superconducting aluminum on europium sulfide,” Phys. Rev. B 90, No. 14, 144509 (2014).

    Article  Google Scholar 

  18. X. Hao, J. S. Moodera, and R. Meservey, “Thin-film superconductor in an exchange field,” Phys. Rev. Lett. 67, 1342–1345 (1991).

    Article  CAS  Google Scholar 

  19. S. Kolenda, C. Sürgers, G. Fische, and D. Beckmann, “Thermoelectric effects in superconductor-ferromagnet tunnel junctions on europium sulfide,” Phys. Rev. B 95, No. 22, 224505 (2017).

    Article  Google Scholar 

  20. M. G. Flokstra, N. Satchell, J. Kim, G. Burnell, P. J. Curran, S. J. Bending, J. F. K. Cooper, C. J. Kinane, S. Langridge, A. Isidori, N. Pugach, M. Eschrig, H. Luetkens, A. Suter, T. Prokscha, and S. L. Lee, “Remotely induced magnetism in a normal metal using a superconducting spin-valve,” Nat. Phys. 12, No. 1, 57–61 (2016).

    Article  CAS  Google Scholar 

  21. J. Linder, A. Sudbo, T. Yokoyama, R. Grein, M. Eschrig, J. Linder, A. Sudbø, T. Yokoyama, R. Grein, and M. Eschrig, “Signature of Odd-frequency pairing correlations induced by a magnetic interface,” Phys. Rev. B 81, No. 21, 214504 (2010).

    Article  Google Scholar 

  22. O. N. Borisova, V. A. Tumanov, and Yu. N. Proshin, “Controllable josephson 0–π junction based on a four-layer ferromagnetic–superconductor system (FSFS),” Phys. Met. Metallogr. 121, No. 5, 434–438 (2020).

    Article  CAS  Google Scholar 

  23. L. S. Uspenskaya, D. S. L’vov, G. A. Penzyakov, and O. V. Skryabina, “Nonreciprocity in yttrium-iron garnet–superconductor structures,” Phys. Met. Metallogr. 121, No. 5, 423–428 (2020).

    Article  CAS  Google Scholar 

  24. M. Eschrig, A. Cottet, W. Belzig, and J. Linder, “General boundary conditions for quasiclassical theory of superconductivity in the diffusive limit: application to strongly spin-polarized systems,” New J. Phys. 17, No. 8, 083037 (2015).

    Article  Google Scholar 

  25. J. A. Ouassou, A. Pal, M. Blamire, M. Eschrig, and J. Linder, “Triplet cooper pairs induced in diffusive s‑wave superconductors interfaced with strongly spin-polarized magnetic insulators or half-metallic ferromagnets,” Sci. Rep. 7, No. 1, 1932 (2017).

    Article  Google Scholar 

  26. Mironov S., A. S. Mel’nikov and A. Buzdin, “Electromagnetic proximity effect in planar superconductor-ferromagnet structures,” Appl. Phys. Lett. 113, No. 2, 022601 (2018).

    Article  Google Scholar 

  27. M. Eschrig, “Scattering problem in nonequilibrium quasiclassical theory of metals and superconductors: general boundary conditions and applications,” Phys. Rev. B 80, No. 13, 134511 (2009).

    Article  Google Scholar 

  28. B. P. Vodopyanov and L. R. Tagirov, “Andreev conductance of a ferromagnet-superconductor point contact,” J. Exp. Theor. Phys. Lett. 77, No. 3, 126–131 (2003).

    Article  CAS  Google Scholar 

  29. B. P. Vodopyanov and L. R. Tagirov, “Oscillations of superconducting transition temperature in strong ferromagnet-superconductor bilayers,” J. Exp. Theor. Phys. Lett. 78, No. 9, 555–559 (2003).

    Article  CAS  Google Scholar 

  30. T. Champel and M. Eschrig, “Effect of an inhomogeneous exchange field on the proximity effect in disordered superconductor-ferromagnet hybrid structures,” Phys. Rev. B 72, No. 5, 054523 (2005).

    Article  Google Scholar 

  31. M. G. Flokstra, T. C. Cunningham, J. Kim, N. Satchell, G. Burnell, P. J. Curran, S. J. Bending, C. J. Kinane, J. F. K. Cooper, S. Langridge, A. Isidori, N. Pugach, M. Eschrig, and S. L. Lee, “Controlled suppression of superconductivity by the generation of polarized cooper pairs in spin-valve structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 91, No. 6, 060501 (2015).

    Article  Google Scholar 

  32. V. O. Yagovtsev and N. G. Pugach, “Magnetization induced in a superconductor due to the effect of proximity with a ferromagnetic dielectric,” Phys. Met. Metallogr. 121, No. 3, 242–247 (2020).

    Article  CAS  Google Scholar 

Download references

Funding

The calculation in the limit close to Тс was supported by the Ministry of Science and Higher Education of the Russian Federation, Megagrant no. 075-15-2019-1934. The calculation for the case of low transparency of the boundary was supported by the Russian Foundation for Basis Research, project no. 19-02-00316-a. The calculation of the superconducting order parameter was carried out as part of the project “Mirror Laboratories” of the Higher School of Economics and the Bashkir State Pedagogical University, Ufa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Yagovtsev.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagovtsev, V.O., Pugach, N.G., Ekomasov, E.G. et al. Magnetization in Superconductor–Ferromagnetic Metal Bilayers Induced by the Inverse Proximity Effect. Phys. Metals Metallogr. 122, 847–854 (2021). https://doi.org/10.1134/S0031918X21090143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21090143

Keywords:

Navigation