Skip to main content
Log in

Cellular Uptake Study of Antimycotic-Loaded Carriers Using Imaging Flow Cytometry and Confocal Laser Scanning Microscopy

  • BIOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The development and optimization of remote drug delivery systems is a flourishing branch of pharmacy. There is a number of requirements for such systems, among which are biocompatibility and, in some cases, the efficiency of intracellular delivery. The cellular survival after the carrier entrapment is an indirect evidence of biocompatibility of the applied system. The internalization process, as well as main characteristics of carriers themselves can be investigated by imaging flow cytometry and confocal laser scanning microscopy. However, the protocols of carriers’ characterization and the assessment of their uptake efficiency are needed to be improved. In this work, we optimized the evaluation technic for particles’ internalization process by imaging flow cytometry. The confocal laser scanning microscopy was applied as a control method of the particle uptake investigation. The comparative research showed a good correlation between the obtained data. Thus, the high throughput capability of imaging flow cytometry together with the optimized technic of the determination of particle localization inside the cell will further allow us to estimate faster the internalization efficiency of the object under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. Decherchi, P. Cochard, and P. Gauthier, J. Neurosci. Methods 71, 205 (1997). https://doi.org/10.1016/S0165-0270(96)00146-X

    Article  Google Scholar 

  2. K. H. Jones and J. A. Senft, J. Histochem. Cytochem. 33, 77 (1985). https://doi.org/10.1177/33.1.2578146

    Article  Google Scholar 

  3. J. R. Tennant, Transplantation 2, 685 (1964). https://doi.org/10.1097/00007890-196411000-00001

    Article  Google Scholar 

  4. J. C. Stockert, A. Blazquez-Castro, M. Canete, R. W. Horobin, and A. Villanueva, Acta Histochem. 114, 785 (2012). https://doi.org/10.1016/j.acthis.2012.01.006

    Article  Google Scholar 

  5. S. N. Rampersad, Sensors 12, 12347 (2012). https://doi.org/10.3390/s120912347

    Article  Google Scholar 

  6. D. Konopacka-Lyskawa, Crystals 9, 223 (2019). https://doi.org/10.3390/cryst9040223

    Article  Google Scholar 

  7. N. A. Feoktistova, A. S. Vikulina, N. G. Balabushevich, A. G. Skirtach, and D. Volodkin, Mater. Des. 185, 108223 (2020). https://doi.org/10.1016/j.matdes.2019.108223

    Article  Google Scholar 

  8. N. G. Balabushevich, A. V. Lopez de Guerenu, N. A. Feoktistova, A. G. Skirtach, and D. Volodkin, Macromol. Biosci. 16, 95 (2016). https://doi.org/10.1002/mabi.201500243

    Article  Google Scholar 

  9. R. Roth, J. Schoelkopf, J. Huwyler, and M. Puchkov, Eur. J. Pharm. Biopharm. 122, 96 (2018). https://doi.org/10.1016/j.ejpb.2017.10.012

    Article  Google Scholar 

  10. A. Madadlou, J. Floury, S. Pezennec, and D. Dupont, Food Hydrocoll. 84, 38 (2018). https://doi.org/10.1016/j.foodhyd.2018.05.054

    Article  Google Scholar 

  11. I. Y. Yanina, Y. I. Svenskaya, E. S. Prikhozhdenko, D. N. Bratashov, M. V. Lomova, D. A. Gorin, G. B. Sukhorukov, and V. V. Tuchin, J. Biophoton. 11, e201800058 (2018). https://doi.org/10.1002/jbio.201800058

  12. L. I. Kazakova, L. I. Shabarchina, and G. B. Sukhorukov, Phys. Chem. Chem. Phys. 13, 11110 (2011). https://doi.org/10.1039/c1cp20354a

    Article  Google Scholar 

  13. S. Donatan, A. Yashchenok, N. Khan, B. Parakhonskiy, M. Cocquyt, B. E. Pinchasik, D. Khalenkow, H. Mohwald, M. Konrad, and A. Skirtach, ACS Appl. Mater. Interfaces. 8, 14284 (2016). https://doi.org/10.1021/acsami.6b03492

    Article  Google Scholar 

  14. S. Chen, D. Zhao, F. Li, R. X. Zhuo, and S. X. Cheng, RSC Adv. 2, 1820 (2012). https://doi.org/10.1039/c1ra00527h

  15. T. Borodina, E. Markvicheva, S. Kunizhev, H. Mohwald, G. B. Sukhorukov, and O. Kreft, Macromol. Rapid Commun. 28, 1894 (2007). https://doi.org/10.1002/marc.200700409

    Article  Google Scholar 

  16. A. V. Vostrikova, E. S. Prikhozhdenko, O. A. Mayorova, I. Y. Goryacheva, N. V. Tarakina, G. B. Sukhorukov, and A. V. Sapelkin, Sci. Rep. 8, 9394 (2018). https://doi.org/10.1038/s41598-018-27488-w

    Article  ADS  Google Scholar 

  17. S. Guo, M. Yang, M. Chen, J. Zhang, K. Liu, L. Ye, and W. Gu, Dalton Trans. 44, 8232 (2015). https://doi.org/10.1039/C5DT00837A

    Article  Google Scholar 

  18. S. V. German, M. V. Novoselova, D. N. Bratashov, P. A. Demina, V. S. Atkin, D. V. Voronin, B. N. Khlebtsov, B. V. Parakhonskiy, G. B. Sukhorukov, and D. A. Gorin, Sci. Rep. 8, 17763 (2018). https://doi.org/10.1038/s41598-018-35846-x

    Article  ADS  Google Scholar 

  19. B. V. Parakhonskiy, Y. I. Svenskaya, A. M. Yashchenok, H. A. Fattah, O. A. Inozemtseva, F. Tessarolo, R. Antolini, and D. A. Gorin, Colloids Surf., B 118, 243 (2014). https://doi.org/10.1016/j.colsurfb.2014.03.053

    Article  Google Scholar 

  20. A. Sergeeva, R. Sergeev, E. Lengert, A. Zakharevich, B. Parakhonskiy, D. Gorin, S. Sergeev, and D. Volodkin, ACS Appl. Mater. Interfaces 7, 21315 (2015). https://doi.org/10.1021/acsami.5b05848

    Article  Google Scholar 

  21. M. Li, Y. Wang, Y. Zhang, J. Yu, S. Ge, and M. Yan, Biosens. Bioelectron. 59, 307 (2014). https://doi.org/10.1016/j.bios.2014.03.072

    Article  Google Scholar 

  22. I. Y. Stetciura, A. V. Markin, A. N. Ponomarev, A. V. Yakimansky, T. S. Demina, C. Grandfils, D. V. Volodkin, and D. A. Gorin, Langmuir 29, 4140 (2013). https://doi.org/10.1021/la305117t

    Article  Google Scholar 

  23. N. Sudareva, O. Suvorova, N. Saprykina, N. Smirnova, P. Bel’tyukov, S. Petunov, A. Radilov, and A. Vilesov, J. Microencapsul. 35, 619 (2018). https://doi.org/10.1080/02652048.2018.1559247

    Article  Google Scholar 

  24. S. K. Kim, M. B. Foote, and L. Huang, Cancer Lett. 334, 311 (2013). https://doi.org/10.1016/j.canlet.2012.07.011

    Article  Google Scholar 

  25. Y. Svenskaya, B. Parakhonskiy, A. Haase, V. Atkin, E. Lukyanets, D. Gorin, and R. Antolini, Biophys. Chem. 182, 11 (2013). https://doi.org/10.1016/j.bpc.2013.07.006

    Article  Google Scholar 

  26. N. Qiu, H. Yin, B. Ji, N. Klauke, A. Glidle, Y. Zhang, H. Song, L. Cai, L. Ma, G. Wang, L. Chen, and W. Wang, Mater. Sci. Eng. C 32, 2634 (2012). https://doi.org/10.1016/j.msec.2012.08.026

    Article  Google Scholar 

  27. I. Marchenko, T. Borodina, D. Trushina, I. Rassokhina, Y. Volkova, V. Shirinian, I. Zavarzin, A. Gogin, and T. Bukreeva, J. Microencapsul. 35, 657 (2018). https://doi.org/10.1080/02652048.2019.1571642

    Article  Google Scholar 

  28. Y. I. Svenskaya, A. M. Pavlov, D. A. Gorin, D. J. Gould, B. V. Parakhonskiy, and G. B. Sukhorukov, Colloids Surf., B 146, 171 (2016). https://doi.org/10.1016/j.colsurfb.2016.05.090

    Article  Google Scholar 

  29. E. Lengert, R. Verkhovskii, N. Yurasov, E. Genina, and Y. Svenskaya, Mater. Lett. 248, 211 (2019). https://doi.org/10.1016/j.matlet.2019.04.028

    Article  Google Scholar 

  30. O. I. Gusliakova, E. V. Lengert, V. S. Atkin, V. V. Tuchin, and Y. I. Svenskaya, Opt. Spectrosc. 126, 539 (2019). https://doi.org/10.1134/S0030400X19050114

    Article  Google Scholar 

  31. D. B. Trushina, T. N. Borodina, V. V. Artemov, and T. V. Bukreeva, Tech. Phys. 63, 1345 (2018). https://doi.org/10.1134/S1063784218090220

    Article  Google Scholar 

  32. Y. I. Svenskaya, E. A. Genina, B. V. Parakhonskiy, E. V. Lengert, E. E. Talnikova, G. S. Terentyuk, S. R. Utz, D. A. Gorin, V. V. Tuchin, and G. B. Sukhorukov, ACS Appl. Mater. Interfaces 11, 17270 (2019). https://doi.org/10.1021/acsami.9b04305

    Article  Google Scholar 

  33. B. Parakhonskiy, M. V. Zyuzin, A. Yashchenok, S. Carregal-Romero, J. Rejman, H. Mohwald, W. J. Parak, and A. G. Skirtach, J. Nanobiotechnol. 13, 53 (2015). https://doi.org/10.1186/s12951-015-0111-7

  34. S. Schmidt, K. Uhlig, C. Duschl, and D. Volodkin, Acta Biomater. 10, 1423 (2014). https://doi.org/10.1016/j.actbio.2013.11.011

    Article  Google Scholar 

  35. A. Kunwar, A. Barik, B. Mishra, K. Rathinasamy, R. Pandey, and K. I. Priyadarsini, Biochim. Biophys. Acta–Gen. Subj. 1780, 673 (2008). https://doi.org/10.1016/j.bbagen.2007.11.016

    Article  Google Scholar 

  36. S. de Koker, B. G. deGeest, C. Cuvelier, L. Ferdinande, W. Deckers, W. E. Hennink, S. C. de Smedt, and N. Mertens, Adv. Funct. Mater. 17, 3754 (2007). https://doi.org/10.1002/adfm.200700416

    Article  Google Scholar 

  37. D. A. Agard and J. W. Sedat, Nature (London, U.K.) 302, 676 (1983). https://doi.org/10.1038/302676a0

    Article  ADS  Google Scholar 

  38. K. Carlsson, P. E. Danielsson, A. Liljeborg, L. Majlof, R. Lenz, and N. Aslund, Opt. Lett. 10, 53 (1985). https://doi.org/10.1364/OL.10.000053

    Article  ADS  Google Scholar 

  39. S. V. German, M. V. Novoselova, D. N. Bratashov, P. A. Demina, V. S. Atkin, D. V. Voronin, B. N. Khlebtsov, B. V. Parakhonskiy, G. B. Sukhorukov, and D. A. Gorin, Sci. Rep. 8, 17763 (2018). https://doi.org/10.1038/s41598-018-35846-x

    Article  ADS  Google Scholar 

  40. C. Riccardi and I. Nicoletti, Nat. Protoc. 1, 1458 (2006). https://doi.org/10.1038/nprot.2006.238

    Article  Google Scholar 

  41. S. Vranic, N. Boggetto, V. Contremoulins, S. Mornet, N. Reinhardt, F. Marano, A. Baeza-Squiban, and S. Boland, Part. Fibre Toxicol. 10, 2 (2013). https://doi.org/10.1186/1743-8977-10-2

    Article  Google Scholar 

  42. E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, and H. Mohwald, Angew. Chem., Int. Ed. 37, 2201 (1998). https://doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E

    Article  Google Scholar 

  43. D. A. Gorin, S. A. Portnov, O. A. Inozemtseva, Z. Luklinska, A. M. Yashchenok, A. M. Pavlov, A. G. Skirtach, H. Mohwald, and G. B. Sukhorukov, Phys. Chem. Chem. Phys. 10, 6899 (2008). https://doi.org/10.1039/b809696a

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 17-73-20172.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. A. Verkhovskii or Yu. I. Svenskaya.

Ethics declarations

Statement on the Welfare of Animals

This article does not contain any studies involving animals or human participants performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verkhovskii, R.A., Lengert, E.V., Saveleva, M.S. et al. Cellular Uptake Study of Antimycotic-Loaded Carriers Using Imaging Flow Cytometry and Confocal Laser Scanning Microscopy. Opt. Spectrosc. 128, 799–808 (2020). https://doi.org/10.1134/S0030400X20060235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20060235

Keywords:

Navigation