Skip to main content
Log in

Determination of the size of a radiation source by the method of calculation of diffraction patterns

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

In traditional X-ray radiography, which has been used for various purposes since the discovery of X-ray radiation, the shadow image of an object under study is constructed based on the difference in the absorption of the X-ray radiation by different parts of the object. The main method that ensures a high spatial resolution is the method of point projection X-ray radiography, i.e., radiography from a point and bright radiation source. For projection radiography, the small size of the source is the most important characteristic of the source, which mainly determines the spatial resolution of the method. In this work, as a point source of soft X-ray radiation for radiography with a high spatial and temporal resolution, radiation from a hot spot of X-pinches is used. The size of the radiation source in different setups and configurations can be different. For four different high-current generators, we have calculated the sizes of sources of soft X-ray radiation from X-ray patterns of corresponding objects using Fresnel-Kirchhoff integrals. Our calculations show that the size of the source is in the range 0.7–2.8 μm. The method of the determination of the size of a radiation source from calculations of Fresnel-Kirchhoff integrals makes it possible to determine the size with an accuracy that exceeds the diffraction limit, which frequently restricts the resolution of standard methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X Rays, Ed. by M. A. Blokhina (Inostrannaya Literatura, Moscow, 1960) [in Russian].

    Google Scholar 

  2. V. E. Cosslett and W. C. Nixon, J. Appl. Phys. 24, 616 (1953).

    Article  ADS  Google Scholar 

  3. E. Satoa, Y. Hayasia, E. Tanakab, et al., Radiat. Phys. Chem. 75, 1841 (2006).

    Article  ADS  Google Scholar 

  4. P. V. A. Burtsev, V. A. Gribkov, and T. I. Filippova, in Advances in Science and Technology, Series Plasma Physics (Moscow, 1981), Vol. 2, pp. 80–137 [in Russian].

    Google Scholar 

  5. C. S. Wong and S. Lee, Sci. Instrum. 55, 1125 (1984).

    Article  ADS  Google Scholar 

  6. K. N. Koshelev and N. R. Pereira, J. Appl. Phys. 69, 21 (1991).

    Article  ADS  Google Scholar 

  7. S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomenskii, S. A. Pikuz, A. I. Samokhin, and I. Ulshmid, Pis’ma Zh. Tekh. Fiz. 8(9), 1060 (1982).

    Google Scholar 

  8. S. A. Pikuz, Doctoral Dissertation (FIAN, Moscow, 2007).

    Google Scholar 

  9. T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, and D. A. Hammer, J. Quant. Spectr. Trasnfer 71, 581 (2001).

    Article  ADS  Google Scholar 

  10. A. Shelkovenko, S. Pikuz, J. D. Douglass, R. D. McBride, J. B. Greenly, and D. A. Hammer, IEEE Trans. Plasma Sci. 34, 2336 (2006).

    Article  ADS  Google Scholar 

  11. T. A. Shelkovenko, S. A. Pikuz, R. D. Braid, P. F. Knapp, and G. Vilgelm, Fiz. Plazmy 36, 53 (2010).

    Google Scholar 

  12. T. A. Shelkovenko, S. A. Pikuz, A. D. Cahill, P. F. Knapp, D. A. Hammer, D. B. Sinars, T. N. Tilikin, and S. N. Mishin, Phys. Plasmas 17 (2010).

  13. T. A. Shelkovenko, S. A. Pikuz, and D. A. Hammer, Proc. SPIE-Int. Soc. Opt. Eng. 4504, 234 (2001).

    Article  ADS  Google Scholar 

  14. T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, K. V. Chandler, and D. A. Hammer, Rev. Sci. Instrum. 72, 667 (2001).

    Article  ADS  Google Scholar 

  15. A. Pikuz, T. A. Shelkovenko, A. R. Mingaleev, V. M. Romanova, B. M. Song, K. M. Chandler, M. D. Mitchell, and D. A. Hammer, Proc. SPIE-Int. Soc. Opt. Eng. 5974, 5974 (2005).

    ADS  Google Scholar 

  16. W. Thomlinson, D. Chapmam, Z. Zhong, R. E. Johnston, and D. Sayers, Medical Applications of Synchrotron Radiation, Ed. by M. Ando and C. Uyama (Springer-Verlag, Tokyo, 1998), pp. 72–76.

  17. B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, M. D. Mitchel, and D. A. Hammer, Appl. Opt. 44, 2349 (2005).

    Article  ADS  Google Scholar 

  18. C. K. Gary, S. A. Pikuz, M. D. Mitchell, K. M. Chandler, T. A. Shelkovenko, D. A. Hammer, and Yu. I. Dud- chik, Rev. Sci. Instrum. 75, 3950 (2004).

    Article  ADS  Google Scholar 

  19. R. A. Lewis, K. D. Rogers, C. J. Hall, et al., in Medical Imaging 2002: Physics of Medical Imaging (SPIE, San Diego, 2002), pp. 268–297.

    Google Scholar 

  20. D. B. Sinars, S. A. Pikuz, J. D. Douglass, R. D. McBride, D. J. Ampleford, P. Knapp, K. Bell, D. Chalenksi, M. E. Cuneo, J. B. Greenly, D. A. Hammer, B. R. Kusse, A. Mingaleev, T. A. Shelkovenko, and D. F. Wenger, Phys. Plasmas 15, 092703 (2008).

    Article  ADS  Google Scholar 

  21. K. Bell, D. Chalenski, M. E. Cuneo, J. B. Greenly, D. A. Hammer, B. R. Kusse, A. Mingaleev, T. A. Shelk- ovenko, and D. F. Wenger, Phys. Plasmas 15, 092703 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Tilikin.

Additional information

Original Russian Text © I.N. Tilikin, T.A. Shelkovenko, S.A. Pikuz, D.A. Hammer, 2013, published in Optika i Spektroskopiya, 2013, Vol. 115, No. 1, pp. 147–156.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilikin, I.N., Shelkovenko, T.A., Pikuz, S.A. et al. Determination of the size of a radiation source by the method of calculation of diffraction patterns. Opt. Spectrosc. 115, 128–136 (2013). https://doi.org/10.1134/S0030400X13050184

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X13050184

Keywords

Navigation