Skip to main content
Log in

HIV Restriction Factor APOBEC3G and Prospects for Its Use in Gene Therapy for HIV

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The mechanisms for the protection of the human body from viral or bacterial agents are extremely diverse. In one such mechanism, an important role belongs to the cytidine deaminase APOBEC3 family, which is the factor of congenital immunity and protects the organism from numerous viral agents. One of the proteins of this family, APOBEC3G, is able to protect against Human Immunodeficiency Virus type 1 in the absence of viral protein Vif. In turn, Vif opposes APOBEC3G action, causing polyubiquity of the protein and degradation in the proteasome. The review describes possible ways to increase the anti-HIV activity of APOBEC3G, giving it resistance to viral protein Vif, as well as potential approaches to the use of modified APOBEC3G in gene therapy for HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Antiretroviral Therapy Cohort Collaboration. 2008. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 372, 293‒299.

    Article  Google Scholar 

  2. Wang J., Holmes M.C. 2016. Engineering hematopoietic stem cells toward a functional cure of human immunodeficiency virus infection. Cytotherapy. 18 (11), 1370–1381.

    Article  CAS  PubMed  Google Scholar 

  3. Arias J.F., Heyer L.N., von Bredow B., Weisgrau K.L., Moldt B., Burton D.R., Rakasz E.G., Evans D.T. 2014. Tetherin antagonism by Vpu protects HIV-infected cells from antibody-dependent cell-mediated cytotoxicity. Proc. Natl. Acad. Sci. U. S. A. 111 (17), 6425–6430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ayinde D., Bruel T., Cardinaud S., Porrot F., Prado J.G., Moris A., Schwartz O. 2015. SAMHD1 Limits HIV-1 antigen presentation by monocyte-derived dendritic cells. J. Virol. 89 (14), 6994–7006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jimenez-Moyano E., Ruiz A., Kløverpris H.N., Rodriguez-Plata M.T., Peña R., Blondeau C., Selwood D.L., Izquierdo-Useros N., Moris A., Clotet B., Goulder P., Towers G.J., Prado J.G. 2016. Nonhuman TRIM5 variants enhance recognition of HIV-1-infected cells by CD8+ T cells. J. Virol. 90 (19), 8552–8562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stopak K.S., Chiu Y.L., Kropp J., Grant R.M., Greene W.C. 2006. Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J. Biol. Chem. 282 (6), 3539–3546.

    Article  PubMed  CAS  Google Scholar 

  7. Lu J., Pan Q., Rong L., Liu S.L., Liang C., Liang C. 2011. The IFITM proteins inhibit HIV-1 infection. J. Virol. 85 (5), 2126–2137.

    Article  CAS  PubMed  Google Scholar 

  8. Tada T., Zhang Y., Koyama T., Tobiume M., Tsunetsugu-Yokota Y., Yamaoka S., Fujita H., Tokunaga K. 2015. MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins. Nat. Med. 21 (12), 1502–1507.

    Article  CAS  PubMed  Google Scholar 

  9. Dufour C., Claudel A., Joubarne N., Merindol N., Maisonnet T., Masroori N., Plourde M.B., Berthoux L. 2018. Editing of the human TRIM5 gene to introduce mutations with the potential to inhibit HIV-1. PLoS One. 13 (1), e0191709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Omelchenko D.O., Glazkova D.V., Bogoslovskaya E.V., Urusov F.A., Zhogina Yu.A., Tsyganova G.M., Shipulin G.A. 2018. Protection of lymphocytes against HIV using lentivirus vector carrying a combination of TRIM5α-HRH genes and microRNA against CCR5. Mol. Biol. (Moscow). 52 (2), 251–261.

    Article  CAS  Google Scholar 

  11. Jimenez-Guardeño J.M., Apolonia L., Betancor G., Malim M.H. 2019. Immunoproteasome activation enables human TRIM5α restriction of HIV-1. Nat. Microbiol. 4 (6), 933‒940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Uchida N., Hsieh M.M., Washington K.N., Tisdale J.F. 2013. Efficient transduction of human hematopoietic repopulating cells with a chimeric HIV1-based vector including SIV capsid. Exp. Hematol. 41 (9), 779‒788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harris R.S., Liddament M.T. 2004. Retroviral restriction by APOBEC proteins. Nat. Rev. Immunol. 4 (11), 868–877.

    Article  CAS  PubMed  Google Scholar 

  14. Conticello S.G. 2008. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 9 (6), 229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sheehy A.M., Gaddis N.C., Choi J.D., Malim M.H. 2002. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral vif protein. Nature. 418 (6898), 646‒650.

    Article  CAS  PubMed  Google Scholar 

  16. LaRue R.S., Jonsson S.R., Silverstein K.A., Lajoie M., Bertrand D., El Mabrouk N., Hotzel I., Andresdottir V., Smith T.P., Harris R.S. 2008. The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals. BMC Mol. Biol. 9, 104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Vieira V.C., Soares M.A. 2013. The role of cytidine deaminases on innate immune responses against human viral infections. Biomed. Res. Int. 2013, 683095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Stavrou S., Ross S.R. 2015. APOBEC3 proteins in viral immunity. J. Immunol. 195 (10), 4565‒4570.

    Article  CAS  PubMed  Google Scholar 

  19. Chaipan C., Smith J.L., Hu W.S., Pathak V.K. 2013. APOBEC3G restricts HIV-1 to a greater extent than APOBEC3F and APOBEC3DE in human primary CD4+ T cells and macrophages. J. Virol. 87 (1), 444‒453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zennou V., Bieniasz P.D. 2006. Comparative analysis of the antiretroviral activity of APOBEC3G and APOBEC3F from primates. Virology. 349 (1), 31‒40.

    Article  CAS  PubMed  Google Scholar 

  21. Mbisa J.L., Bu W., Pathak V.K. 2010. APOBEC3F and APOBEC3G inhibit HIV-1 DNA integration by different mechanisms. J. Virol. 84 (10), 5250‒5259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chan D.C., Kim P.S. 1998. HIV entry and its inhibition. Cell. 93 (5), 681‒684.

    Article  CAS  PubMed  Google Scholar 

  23. Li C., Burdick R.C., Nagashima K., Hu W.S., Pathak V.K. 2021. HIV-1 cores retain their integrity until minutes before uncoating in the nucleus. Proc. Natl. Acad. Sci. U. S. A. 118 (10), e2019467118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harris R.S., Dudley J.P. 2015. APOBECs and virus restriction. Virology. 479480, 131‒145.

    Article  CAS  Google Scholar 

  25. Khan M.A., Kao S., Miyagi E., Takeuchi H., Goila-Gaur R., Opi S., Gipson C.L., Parslow T.G., Ly H., Strebel K. 2005. Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes. J. Virol. 79 (9), 5870‒5874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang H., Ito F., Wolfe A.D., Li S., Mohammadzadeh N., Love R.P., Yan M., Zirkle B., Gaba A., Chelico L., Chen X.S. 2020. Understanding the structural basis of HIV-1 restriction by the full length double-domain APOBEC3G. Nat. Commun. 11 (1), 632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schäfer A., Bogerd H.P., Cullen B.R. 2004. Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the Gag polyprotein precursor. Virology. 328 (2), 163‒168.

    Article  PubMed  CAS  Google Scholar 

  28. Cen S., Guo F., Niu M., Saadatmand J., Deflassieux J., Kleiman L. 2004. The interaction between HIV-1 Gag and APOBEC3G. J. Biol. Chem. 279 (32), 33177–33184.

    Article  CAS  PubMed  Google Scholar 

  29. Salter J.D., Polevoda B., Bennett R.P., Smith H.C. 2019. Regulation of antiviral innate immunity through APOBEC ribonucleoprotein complexes. Subcell. Biochem. 93, 193‒219.

    Article  CAS  PubMed  Google Scholar 

  30. Morse M., Naufer M.N., Feng Y., Chelico L., Rouzina I., Williams M.C. 2019. HIV restriction factor APOBEC3G binds in multiple steps and conformations to search and deaminate single-stranded DNA. Elife. 8, e52649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Browne E.P., Allers C., Landau N.R. 2009. Restriction of HIV-1 by APOBEC3G is cytidine deaminase-dependent. Virology. 387 (2), 313‒321.

    Article  CAS  PubMed  Google Scholar 

  32. Yu Q., König R., Pillai S., Chiles K., Kearney M., Palmer S., Richman D., Coffin J.M., Landau N.R. 2004. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat. Struct. Mol. Biol. 11 (5), 435‒442.

    Article  CAS  PubMed  Google Scholar 

  33. Feng Y., Baig T.T., Love R.P., Chelico L. 2014. Suppression of APOBEC3-mediated restriction of HIV-1 by vif. Front. Microbiol. 5, 450.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Soliman M., Srikrishna G., Balagopal A. 2017. Mechanisms of HIV-1 control. Curr. HIV/AIDS Rep. 14 (3), 101‒109.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu X., Yu Y., Liu B., Luo K., Kong W., Mao P., Yu X.F. 2003. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 vif-Cul5-SCF complex. Science. 302 (5647), 1056‒1060.

    Article  CAS  PubMed  Google Scholar 

  36. Guo Y., Dong L., Qiu X., Wang Y., Zhang B., Liu H., Yu Y., Zang Y., Yang M., Huang Z. 2014. Structural basis for hijacking CBF-β and CUL5 E3 ligase complex by HIV-1 vif. Nature. 505 (7482), 229‒233.

    Article  CAS  PubMed  Google Scholar 

  37. Went M., Kinnersley B., Sud A., Johnson D.C., Weinhold N., Försti A., van Duin M., Orlando G., Mit-chell J.S., Kuiper R., Walker B.A., Gregory W.M., Hoffmann P., Jackson G.H., Nöthen M.M., da Silva Filho M.I., Thomsen H., Broyl A., Davies F.E., Thorsteinsdottir U., Hansson M., Kaiser M., Sonneveld P., Goldschmidt H., Stefansson K., Hemminki K., Nilsson B., Morgan G.J., Houlston R.S. 2019. Transcriptome-wide association study of multiple myeloma identifies candidate susceptibility genes. Hum. Genomics. 13 (1), 37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kim E.Y., Lorenzo-Redondo R., Little S.J., Chung Y.S., Phalora P.K., Maljkovic Berry I., Archer J., Penugonda S., Fischer W., Richman D.D., Bhattacharya T., Malim M.H., Wolinsky S.M. 2014. Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection. PLoS Pathog. 10 (7), e1004281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kim E.Y., Bhattacharya T., Kunstman K., Swantek P., Koning F.A., Malim M.H., Wolinsky S.M. 2010. Human APOBEC3G-mediated editing can promote HIV-1 sequence diversification and accelerate adaptation to selective pressure. J. Virol. 84 (19), 10402‒10405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Venkatesan S., Rosenthal R., Kanu N., McGranahan N., Bartek J., Quezada S.A., Hare J., Harris R.S., Swanton C. 2018. Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann. Oncol. 29 (3), 563‒572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ikeda T., Yue Y., Shimizu R., Nasser H. 2021. Potential utilization of APOBEC3-mediated mutagenesis for an HIV-1 functional cure. Front. Microbiol. 12, 686357.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nowarski R., Wilner O.I., Cheshin O., Shahar O.D., Kenig E., Baraz L., Britan-Rosich E., Nagler A., Harris R.S., Goldberg M., Willner I., Kotler M. 2012. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair. Blood. 120 (2), 366‒375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Botvinnik A., Shivam P., Smith Y., Sharma G., Olshevsky U., Moshel O., Manevitch Z., Climent N., Oliva H., Britan-Rosich E., Kotler M. 2021. APOBEC3G rescues cells from the deleterious effects of DNA damage. FEBS J. 288 (20), 6063‒6077.

    Article  CAS  PubMed  Google Scholar 

  44. Talluri S., Samur M.K., Buon L., Kumar S., Potluri L.B., Shi J., Prabhala R.H., Shammas M.A., Munshi N.C. 2021. Dysregulated APOBEC3G causes DNA damage and promotes genomic instability in multiple myeloma. Blood Cancer J. 11 (10), 166.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ding Q., Chang C.J., Xie X., Xia W., Yang J.Y., Wang S.C., Wang Y., Xia J., Chen L., Cai C., Li H., Yen C.J., Kuo H.P., Lee D.F., Lang J., Huo L., Cheng X., Chen Y.J., Li C.W., Jeng L.B., Hsu J.L., Li L.Y., Tan A., Curley S.A., Ellis L.M., Dubois R.N., Hung M.C. 2011. APOBEC3G promotes liver metastasis in an orthotopic mouse model of colorectal cancer and predicts human hepatic metastasis. J. Clin. Invest. 121 (11), 4526‒4536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Desimmie B.A., Delviks-Frankenberrry K.A., Burdick R.C., Qi D., Izumi T., Pathak V.K. 2014. Multiple APOBEC3 restriction factors for HIV-1 and one vif to rule them all. J. Mol. Biol. 426 (6), 1220‒1245.

    Article  CAS  PubMed  Google Scholar 

  47. Garg A., Kaul D., Chauhan N. 2015. APOBEC3G governs to ensure cellular oncogenic transformation. Blood Cells Mol. Dis. 55 (3), 248‒254.

    Article  CAS  PubMed  Google Scholar 

  48. Sharma S., Garg A., Dhanda R.S., Kaul D. 2016. APOBEC3G governs the generation of truncated AATF protein to ensure oncogenic transformation. Cell Biol. Int. 40 (12), 1366‒1371.

    Article  CAS  PubMed  Google Scholar 

  49. Lackey L., Law E.K., Brown W.L., Harris R.S. 2013. Subcellular localization of the APOBEC3 proteins during mitosis and implications for genomic DNA deamination. Cell Cycle. 12, 762–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oliva H., Pacheco R., Martinez-Navio J.M., Rodríguez-García M., Naranjo-Gómez M., Climent N., Prado C., Gil C., Plana M., García F., Miró J.M., Franco R., Borras F.E., Navaratnam N., Gatell J.M., Gallart T. 2016. Increased expression with differential subcellular location of cytidine deaminase APOBEC3G in human CD4(+) T-cell activation and dendritic cell maturation. Immunol. Cell Biol. 94 (7), 689‒700.

    Article  CAS  PubMed  Google Scholar 

  51. Arias J.F., Koyama T., Kinomoto M., Tokunaga K. 2012. Retroelements versus APOBEC3 family members: no great escape from the magnificent seven. Front. Microbiol. 3, 275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chiang A.C., Massagué J. 2008. Molecular basis of metastasis. N. Engl. J. Med. 359 (26), 2814‒2823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nathans R., Cao H., Sharova N., Ali A., Sharkey M., Stranska R., Stevenson M., Rana T.M. 2008. Small-molecule inhibition of HIV-1 Vif. Nat. Biotechnol. 26 (10), 1187‒1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mohammed I., Kummetha I.R., Singh G., Sharova N., Lichinchi G., Dang J., Stevenson M., Rana T.M. 2016. 1,2,3-Triazoles as amide bioisosteres: discovery of a new class of potent HIV-1 Vif antagonists. J. Med. Chem. 59 (16), 7677‒7682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou M., Luo R.H., Hou X.Y., Wang R.R., Yan G.Y., Chen H., Zhang R.H., Shi J.Y., Zheng Y.T., Li R., Wei Y.Q. 2017. Synthesis, biological evaluation and molecular docking study of N-(2-methoxyphenyl)-6-((4-nitrophenyl)sulfonyl)benzamide derivatives as potent HIV-1 Vif antagonists. Eur. J. Med. Chem. 129, 310‒324.

    Article  CAS  PubMed  Google Scholar 

  56. Sharkey M., Sharova N., Mohammed I., Huff S.E., Kummetha I.R., Singh G., Rana T.M., Stevenson M. 2019. HIV-1 escape from small-molecule antagonism of Vif. mBio. 10 (1), e00144-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Letko M., Booiman T., Kootstra N., Simon V., Ooms M. 2015. Identification of the HIV-1 vif and human APOBEC3G protein interface. Cell Rep. 13 (9), 1789‒1799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Delviks-Frankenberry K.A., Ackerman D., Timberlake N.D., Hamscher M., Nikolaitchik O.A., Hu W.S., Torbett B.E., Pathak V.K. 2019. Development of lentiviral vectors for HIV-1 gene therapy with vif-resistant APOBEC3G. Mol. Ther.—Nucleic Acids. 18, 1023‒1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang X., Ao Z., Jayappa K.D., Shi B., Kobinger G., Yao X. 2014. R88-APOBEC3Gm inhibits the replication of both drug-resistant strains of HIV-1 and viruses produced from latently infected cells. Mol. Ther.—Nucleic Acids. 3 (3), e151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Voit R.A., McMahon M.A., Sawyer S.L., Porteus M.H. 2013. Generation of an HIV resistant T-cell line by targeted “stacking” of restriction factors. Mol. Ther. 21 (4), 786‒795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ao Z., Wang X., Bello A., Jayappa K.D., Yu Z., Fowke K., He X., Chen X., Li J., Kobinger G., Yao X. 2011. Characterization of anti-HIV activity mediated by R88-APOBEC3G mutant fusion proteins in CD4+ T cells, peripheral blood mononuclear cells, and macrophages. Hum. Gene. Ther. 22 (10), 1225‒1237.

    Article  CAS  PubMed  Google Scholar 

  62. Zaykova E.K., Levchuk K.A., Pozdnyakov D.Yu., Daks A.A., Zaritsky A.Yu., Petukhov A.V. 2020. Efficient transduction of T-lymphocytes by lentiviral particles in oncoimmunological studies. Klin. Onkogematol. 13 (3), 295–306.

    Google Scholar 

  63. Delviks-Frankenberry K.A., Desimmie B.A., Pathak V.K. 2020. Structural insights into APOBEC3-mediated lentiviral restriction. Viruses. 12 (6), 587.

    Article  CAS  PubMed Central  Google Scholar 

  64. Hu W.S., Pathak V.K. 2000. Design of retroviral vectors and helper cells for gene therapy. Pharmacol. Rev. 52 (4), 493‒511.

    CAS  PubMed  Google Scholar 

  65. Sandoval-Villegas N., Nurieva W., Amberger M., Ivics Z. 2021. Contemporary transposon tools: a review and guide through mechanisms and applications of sleeping beauty, piggyBac and Tol2 for genome engineering. Int. J. Mol. Sci. 22 (10), 5084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jillette N., Du M., Zhu J.J., Cardoz P., Cheng A.W. 2019. Split selectable markers. Nat. Commun. 10 (1), 4968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chen H., Lilley C.E., Yu Q., Lee D.V., Chou J., Narvaiza I., Landau N.R., Weitzman M.D. 2006. APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr. Biol. 16 (5), 480‒485.

    Article  CAS  PubMed  Google Scholar 

  68. Narvaiza I., Linfesty D.C., Greener B.N., Hakata Y., Pintel D.J., Logue E., Landau N.R., Weitzman M.D. 2009. Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase. PLoS Pathog. 5 (5), e1000439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ao Z., Yu Z., Wang L., Zheng Y., Yao X. 2008. Vpr14-88-APOBEC3G fusion protein is efficiently incorporated into vif-positive HIV-1 particles and inhibits viral infection. PLoS One. 3 (4), e1995.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Miyagi E., Welbourn S., Sukegawa S., Fabryova H., Kao S., Strebel K. 2020. Inhibition of vif-mediated degradation of APOBEC3G through competitive binding of core-binding factor beta. J. Virol. 94 (7), e01708-19.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang H., Liu B., Liu X., Li Z., Yu X.F., Zhang W. 2014. Identification of HIV-1 vif regions required for CBF-β interaction and APOBEC3 suppression. PLoS One. 9 (5), e95738.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Miyagi E., Kao S., Yedavalli V., Strebel K. 2014. CBFβ enhances de novo protein biosynthesis of its binding partners HIV-1 vif and RUNX1 and potentiates the vif-induced degradation of APOBEC3G. J. Virol. 88 (9), 4839‒4852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Blyth K., Cameron E.R., Neil J.C. 2005. The RUNX genes: gain or loss of function in cancer. Nat. Rev. Cancer. 5 (5), 376‒387.

    Article  CAS  PubMed  Google Scholar 

  74. Asou N. 2003. The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications. Crit. Rev. Oncol. Hematol. 45 (2), 129‒150.

    Article  PubMed  Google Scholar 

  75. Iwatani Y., Chan D.S., Liu L., Yoshii H., Shibata J., Yamamoto N., Levin J.G., Gronenborn A.M., Sugiura W. 2009. HIV-1 vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain. Proc. Natl. Acad. Sci. U. S. A. 106 (46), 19539‒19544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Turner T., Shao Q., Wang W., Wang Y., Wang C., Kinlock B., Liu B. 2016. Differential contributions of ubiquitin-modified APOBEC3G lysine residues to HIV-1 vif-induced degradation. J. Mol. Biol. 428 (17), 3529‒3539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pan T., Song Z., Wu L., Liu G., Ma X., Peng Z., Zhou M., Liang L., Liu B., Liu J., Zhang J., Zhang X., Huang R., Zhao J., Li Y., Ling X., Luo Y., Tang X., Cai W., Deng K., Li L., Zhang H. 2019. USP49 potently stabilizes APOBEC3G protein by removing ubiquitin and inhibits HIV-1 replication. Elife. 8, e48318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li L., Liang D., Li J.Y., Zhao R.Y. 2008. APOBEC3G-UBA2 fusion as a potential strategy for stable expression of APOBEC3G and inhibition of HIV-1 replication. Retrovirology. 5, 72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

Writing this review did not require special funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Tikhonov.

Ethics declarations

In carrying out this work, all ethical standards were observed. The authors declare that they have no conflicts of interest. This article does not contain any studies involving humans and animals as objects.

Additional information

Translated by A. Ostyak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, A.S., Mintaev, R.R., Glazkova, D.V. et al. HIV Restriction Factor APOBEC3G and Prospects for Its Use in Gene Therapy for HIV. Mol Biol 56, 508–516 (2022). https://doi.org/10.1134/S0026893322040112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322040112

Keywords:

Navigation