Skip to main content
Log in

Molecular Mechanisms of Interactions between Mitochondria and the Endoplasmic Reticulum: A New Look at How Important Cell Functions are Supported

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Interactions between the endoplasmic reticulum (ER) and mitochondria have received insufficient attention until recently. However, distorted contacts between the ER and mitochondria were identified as an important factor in the etiopathogenesis of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In view of these new data, the mechanisms of ER–mitochondrial interactions are necessary to study in detail in order to develop new diagnostic and therapeutic approaches to neurodegenerative diseases and to extend basic knowledge of the physiology of the eukaryotic cell. The review focuses on the functions of mitochondria-associated ER membranes (MAMs). Structural elements of the MAM system, their contributions to the vital cell functions (calcium and lipid homeostasis, autophagy, fusion and division of mitochondria, and the regulation of their number), and the role of MAM dysfunctions in the pathogenesis of various neurodegenerative diseases are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Skulachev V.P. 2006. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis. 11 (4), 473–485.

    CAS  PubMed  Google Scholar 

  2. Sukhorukov V.S. 2011. Ocherki mitokhondrial’noi patologii (Essays on Mitochondrial Pathology). Moscow. Medpraktika-M.

  3. Wallace D. 2010. Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutagen. 51 (5), 440–450.

    CAS  PubMed  Google Scholar 

  4. Tsaregorodtsev A.D., Sukhorukov V.S. 2012. Mitochondrial medicine: Problems and tasks. Ross. Vestn. Perinatol. Pediatr. 4 (2), 112–115.

  5. Skulachev M.V., Skulachev V.P. 2014. New data on programmed aging—slow phenoptosis. Biochemistry (Moscow). 70 (10), 977–993.

    Google Scholar 

  6. Hallberg B., Larsson N. 2014. Making proteins in the powerhouse. Cell Metab. 20, 226–240.

    PubMed  Google Scholar 

  7. Herst P., Rowe M., Carson G., Berridge M.V. 2017. Functional mitochondria in health and disease. Front. Endocrinol. (Lausanne). 8, 296.

    Google Scholar 

  8. Pinton P. 2018. Mitochondria-associated membranes (MAMs) and pathologies. Cell. Death Dis. 9, 413.

    PubMed  PubMed Central  Google Scholar 

  9. Hollien J. 2013. Evolution of the unfolded protein response. Biochim. Biophys. Acta. 1833, 2458–2463.

    CAS  PubMed  Google Scholar 

  10. Bittremieux M., Parys J.B., Pinton P., Bultynck G. 2016. ER functions of oncogenes and tumor suppressors: modulators of intracellular Ca2+ signaling. Biochim. Biophys. Acta. 1863, 1364–1378.

    CAS  PubMed  Google Scholar 

  11. Lai E., Teodoro T., Volchuk A. 2007. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology. 22, 193–201.

    CAS  PubMed  Google Scholar 

  12. Stankov K., Stanimirov B., Mikov M. 2014. Cellular responses to endoplasmic reticulum stress. Biol. Serb. 35, 15–23.

    Google Scholar 

  13. Giorgi C., Missiroli S., Patergnani S., Duszynski J., Wieckowski M.R., Pinton P. 2015. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid. Redox Signaling. 22, 995–1019.

    CAS  Google Scholar 

  14. Bononi A. 2012. Mitochondria-associated membranes (MAMs) as hotspot Ca2+ signaling units. Adv. Exp. Med. Biol. 740, 411–437.

    CAS  PubMed  Google Scholar 

  15. Schreiner B., Ankarcrona M. 2017. Isolation of mitochondria-associated membranes (MAM) from mouse brain tissue. Methods Mol. Biol. 1567, 53–68.

    CAS  PubMed  Google Scholar 

  16. Giacomello M., Pellegrini L. 2016. The coming of age of the mitochondria-ER contact: a matter of thickness. Cell. Death Differ. 23, 1417–1427.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lahiri S. 2014. A conserved endoplasmic reticulum membrane protein complex (EMC. facilitates phospho-lipid transfer from the ER to mitochondria. PLoS Biol. 12, e1001969.

    PubMed  PubMed Central  Google Scholar 

  18. Kornmann B. 2009. An ER–mitochondria tethering complex revealed by a synthetic biology screen. Science. 325, 477–481.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kerkhofs M., Bittremieux M., Morciano G. 2018. Emerging molecular mechanisms in chemotherapy: Ca2+ signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell. Death Dis. 9, 334.

    PubMed  PubMed Central  Google Scholar 

  20. ShengnanW., Ming-Hui Z. 2019. Mitochondria-associated endoplasmic reticulum membranes in the heart. Arch. Biochem. Biophys. 662, 201–212.

    Google Scholar 

  21. De Brito O.M., Scorrano L. 2008. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 456, 605–610.

    PubMed  Google Scholar 

  22. Szabadkai G., Bianchi K. 2006. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Iwasawa R., Mahul-Mellier A.L. 2011. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30, 556–568.

    CAS  PubMed  Google Scholar 

  24. Stoica R., De Vos K.J., Paillusson S., Mueller S., Sancho R.M., Lau K.F., Vizcay-Barrena G., Lin W.L., Xu Y., Lewis J., Dickson D.W., Petrucelli L., Mitchell J.C., Shaw C.E., Miller C. 2014. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 3996.

    CAS  PubMed  Google Scholar 

  25. Hirabayashi Y., Kwon S.K., Paek H., Pernice W.M., Paul M.A., Lee J., Efrani P., Raczkowski A., Petrey D.S., Pon L.A., Polleux F. 2017. PZD8 ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science. 358, 623–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang P.T., Garcin P.O., Wang P.T., Garcin P.O., Fu M., Masoudi M., St-Pierre P., Pante N., Nabi I.R. 2015. Distinct mechanisms controlling rough and smooth endoplasmic reticulum contacts with mitochondria. J. Cell Sci. 128, 2759–2765.

    CAS  PubMed  Google Scholar 

  27. Csordás G., Renken C., Varnai P., Walter L., Weaver D., Buttle K.F., Balla T., Manella C.A., Hajnoczky G. 2006. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921.

    PubMed  PubMed Central  Google Scholar 

  28. Zhang A., Williamson C.D., Wong D.S., Bullough M.D., Brown K.J., Hathout Y., Colberg-Poley A.M. 2011. Quantitative proteomic analyses of human cytomegalovirus-induced restructuring of endoplasmic reticulum-mitochondrial contacts at late times of infection. Mol. Cell Proteomics. 10, M111.009936.

  29. Poston C.N., Krishnan S.C., Bazemore-Walker C.R. 2013. In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM). J. Proteomics. 79, 219–230.

    CAS  PubMed  Google Scholar 

  30. Rizzuto R., Pinton P., Carrington W., Fay F., Fogarty K., Lifshitz L., Tuft R., Pozzan T. 1998. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science280, 1763–1766.

    CAS  PubMed  Google Scholar 

  31. Sood A., Jeyaraju D., Prudent J., Caron A., Lemieux P., McBride H., Laplante M., Toth K., Pellegrini L. 2014. A mitofusin-2-dependent inactivating cleavage of Opa1 links changes in mitochondria cristae and ER contacts in the postprandial liver. Proc. Natl. Acad. Sci. U. S. A. 111, 16017–16022.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bootman M.D. 2012. Calcium signaling. Cold Spring Harb. Perspect. Biol. 4, a011171.

    PubMed  PubMed Central  Google Scholar 

  33. Clapham D.E. 2007. Calcium signaling. Cell. 131, 1047–1058.

    CAS  PubMed  Google Scholar 

  34. Tadini-Buoninsegni F., Smeazzetto S. 2018. Drug interactions with the Ca2+-ATPase from sarco(endo)plasmic reticulum (SERCA). Front. Mol. Biosci. 20, 123–136.

    Google Scholar 

  35. Chemaly E.R., Troncone L., Lebeche D., Smeazzetto S., Gualdani R., Moncelli M. 2018. SERCA control of cell death and survival. Cell Calcium. 69, 46–61.

    CAS  PubMed  Google Scholar 

  36. Stefani D., Rizzuto R., Pozzan T. 2016. Enjoy the trip: Calcium in mitochondria back and forth. Annu. Rev. Biochem. 85, 161–192.

    PubMed  Google Scholar 

  37. Bononi A., Missiroli S., Poletti F., Suski J., Agnoletto C., Bonora M., Marchi E., Giorgi C., Marchi S., Patergnani S., Wieckowski M., Pinton P. 2012. Mitochondria-associated membranes (MAMs) as hotspot Ca2+ signaling units. Adv. Exp. Med. Biol. 740, 411–437.

    CAS  PubMed  Google Scholar 

  38. Veeresh P., Kaur H., Sarmah D., Mounica L., Verma G., Kotian V., Kesharwani R., Kalia K., Borah A., Wang X., Dave K., Rodriguez AM, Yagaval D., Bhattacharya P. 2019. Endoplasmic reticulum–mitochondria crosstalk: From junction to function across neurological disorders. Ann. N. Y. Acad. Sci. 1457, 41–60.

    PubMed  Google Scholar 

  39. Parys J.B., De Smedt H. 2012. Inositol 1,4,5-trisphosphate and its receptors. Adv. Exp. Med. Biol. 740, 255–279.

    CAS  PubMed  Google Scholar 

  40. Fekete A., Nakamura Y., Yang Y., Herlitze S., Mark M., DiGregorio D., Wang L. 2019. Underpinning heterogeneity in synaptic transmission by presynaptic ensembles of distinct morphological modules. Nat. Commun. 10, 826.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mishra P., Chan D.C. 2016. Metabolic regulation of mitochondrial dynamics. Cell Biol. 212, 379–387.

    CAS  Google Scholar 

  42. Tagaya M., Arasaki K. 2017. Regulation of mitochondrial dynamics and autophagy by the mitochondria-associated membrane. Adv. Exp. Med. Biol. 997, 33–47.

    CAS  PubMed  Google Scholar 

  43. Schrepfer E., Scorrano L. 2016. Mitofusins, from mitochondria to metabolism. Mol. Cell. 61, 683–694.

    CAS  PubMed  Google Scholar 

  44. Zorzano A., Hernández-Alvarez M.I., Sebastian D., Munoz J.P. 2015. Mitofusin 2 as a driver that controls energy metabolism and insulin signaling. Antioxid. Redox Signal. 22, 1020–1031.

    CAS  PubMed  Google Scholar 

  45. Dorn G.W., Song M., Walsh K. 2015. Functional implications of mitofusin 2-mediated mitochondrial–SR tethering. J. Mol. Cell Cardiol. 78, 123–128.

    CAS  PubMed  Google Scholar 

  46. Anand R., Wai T., Baker M., Kladt N., Schauss A., Rugarli E., Langer T. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204, 919–929.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Richter V., Palmer C.S., Osellame L., Singh A., Elgass K., Stroud D., Sesaki H., Kvansakul M., Ryan M. 2014. Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. J. Cell Biol. 204, 477–486.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jin X., Wang J. 2017. Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer. PLoS Genet. 13, e1006748.

    PubMed  PubMed Central  Google Scholar 

  49. Wikstrom J.D., Mahdaviani K., Liesa M., Sereda S.B., Si Y., Las G., Twig G., Petrovic N., Zingaretti C., Graham A., Cinti S., Corkey B., Cannon B., Nedergaard J., Shirihai O. 2014. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J. 33, 418–436.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sheng Z.H. 2017. The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol. 27, 403–416.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hailey D.W., Rambold A.S. 2010. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 141, 656–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hamasaki M., Furuta N., Matsuda A., Nezu A., Yamamoto A., Fujita N., Hiroko O., Noda T., Haraguchi T., Hiraoka Y., Amano A., Yoshimori T. 2013. Autophagosomes form at ER-mitochondria contact sites. Nature. 495, 389–393.

    CAS  PubMed  Google Scholar 

  53. Arasaki K., Shimizu H., Mogari H., Nishida N., Hirota N., Furuno A., Kudo Y., Baba M., Baba N., Cheng J., Furuta N., Matsuda A., Nezu A., Yamamoto A., Fujita N., et al. 2013. A role for the ancient SNARE syntaxin 17 in regulating mitochondrial division. Dev. Cell. 32, 304–317.

    Google Scholar 

  54. Walter P., Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 334, 1081–1086.

    CAS  PubMed  Google Scholar 

  55. Lan B., He Y., Sun H., Zheng X., Gao Y., Li N. 2019. The roles of mitochondria-associated membranes in mitochondrial quality control under endoplasmic reticulum stress. Life Sci. 231, 116587.

    CAS  PubMed  Google Scholar 

  56. Glancy B., Balaban R.S. 2012. Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry. 51 (14), 2959–2973. doi https://doi.org/10.1021/bi2018909

    Article  CAS  PubMed  Google Scholar 

  57. Son S.M., Byun J., Roh S.E., Kim S.J., Mook-Jung I. 2014. Reduced IRE1α mediates apoptotic cell death by disrupting calcium homeostasis via the InsP3 receptor. Cell. Death Dis. 5 (4), 1188. doi https://doi.org/10.1038/cddis.2014.129

    Article  CAS  Google Scholar 

  58. Rambold A.S., Kostelecky B., Elia N., Lippincott-Schwartz J. 2011. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. U. S. A. 108, 10190–10195.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang Y., Ren S., Liu Y., Gao K., Liu Z., Zhang Z. 2017. Inhibition of starvation-triggered endoplasmic reticulum stress, autophagy, and apoptosis in ARPE-19 cells by taurine through modulating the expression of calpain-1 and calpain-2. Int. J. Mol. Sci. 18, 23–24.

    CAS  Google Scholar 

  60. Cui J., Li Z., Zhuang S., Qi S., Li L., Zhou J., Zhang W., Zhao Y. 2018. Melatonin alleviates inflammation-induced apoptosis in human umbilical vein endothelial cells via suppression of Ca2+-XO-ROS-Drp1-mitochondrial fission axis by activation of AMPK/SERCA2a pathway. Cell Stress Chaperones. 23, 281–293.

    CAS  PubMed  Google Scholar 

  61. Gelmetti V., De Rosa P., Torosantucci L., Marini E.S., Romagnoli A., Di Rienzo M., Arena G., Vignone D., Fimia G.M., Valente E.M. 2017. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy. 13 (4), 654–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Deniaud A., Sharaf el dein O., Maillier E., Poncet D., Kroemer G., Lemaire C., Brenner C. 2008. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene. 27, 285–299.

    CAS  PubMed  Google Scholar 

  63. Vervliet T., Clerix E., Seitaj B., Ivanova H., Monaco G., Bultynck G. 2017. Modulation of Ca2+ signaling by anti-apoptotic B-cell lymphoma 2 proteins at the endoplasmic reticulum-mitochondrial interface. Front. Oncol. 7, 75–76.

    PubMed  PubMed Central  Google Scholar 

  64. Oakes S.A., Scorrano L., Opferman J.T., Bassik M.C., Nishino M., Pozzan T., Korsmeyer S.J. 2005. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 102, 105–110.

    CAS  PubMed  Google Scholar 

  65. Monaco G., Decrock E., Arbel N., van Vliet A.R., La Rovere R.M., De Smedt H., Parys J.B., Agostinis P., Leybaert L., Shoshan-Barmatz V., Bultynck G. 2015. The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria. J. Biol. Chem. 290, 9150–9161.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Banerjee J., Ghosh S. 2004. Bax increases the pore size of rat brain mitochondrial voltage-dependent anion channel in the presence of tBid. Biochem. Biophys. Res. Commun. 323, 310–314.

    CAS  PubMed  Google Scholar 

  67. Sassano M.L., van Vliet A.R., Agostinis P. 2017. Mitochondria-associated membranes as networking platforms and regulators of cancer cell fate. Front. Oncol. 7, 174.

    PubMed  PubMed Central  Google Scholar 

  68. Dietel E., Brobeil A., Delventhal L., Tag C., Gattenlohner S., Wimmer M. 2019. Crosstalks of the PTPIP51 interactome revealed in Her2 amplified breast cancer cells by the novel small molecule LDC3/Dynarrestin. PLoS One. 14 (5), e0216642.

    PubMed  PubMed Central  Google Scholar 

  69. Herrera-Cruz M.S., Simmen T. 2017. Cancer: untethering mitochondria from the endoplasmic reticulum? Front. Oncol. 7, 105.

    PubMed  PubMed Central  Google Scholar 

  70. Janikiewicz J., Hanzelka K., Kozinski K., Kolczynska K., Dobrzyn A. 2015. Islet beta-cell failure in type 2 diabetes – within the network of toxic lipids. Biochem. Biophys. Res. Commun. 460, 491–496.

    CAS  PubMed  Google Scholar 

  71. Szymański J., Janikiewicz J., Michalska B., Patalas-Krawczyk P., Perrone M., Ziółkowski W., Duszyński J., Pinton P., Dobrzyń A., Więckowski M. R. 2017. Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. Int. J. Mol. Sci. 18, 1576.

    PubMed Central  Google Scholar 

  72. Tubbs E., Rieusset J. 2016. Metabolic signaling functions of ER-mitochondria contact sites: Role in metabolic diseases. Soc. Endocrinol. 58, 87–R106.

    Google Scholar 

  73. Thivolet C., Vial G., Cassel R., Rieusset J., Madec A.M. 2017. Reduction of endoplasmic reticulum–mitochondria interactions in beta cells from patients with type 2 diabetes. PLoS One. 12, e0182027.

    PubMed  PubMed Central  Google Scholar 

  74. Tubbs E., Chanon S., Robert M., Benridi N., Bidaux G., Chauvin M.A., Ji-Cao J., Durand C., Gayrit-Ramette D., Vidal H., Lefai E., Rieusset J. 2018. Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans. Diabetes. 67, 636–650.

    CAS  PubMed  Google Scholar 

  75. Tubbs E., Theurey P., Vial G., Bendridi N., Bravard A., Chauvin M.A., Ji-Cao J., Zoulim F., Bartosch B., Ovize M., Vidal H., Rieusset J. 2014. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes. 63, 3279–3294.

    CAS  PubMed  Google Scholar 

  76. Sasi U.S.S., Ganapathy S., Palayyan S.R., Gopal R.K. 2020. Mitochondria associated membranes (MAMs): Emerging drug targets for diabetes. Curr. Med Chem. 27, 3362–3385.

    PubMed  Google Scholar 

  77. Shinjo S., Jiang S., Nameta M., Suzuki T., Kanai M., Nomura Y., Goda N. 2017. Disruption of the mitochondria-associated ER membrane (MAM) plays a central role in palmitic acid-induced insulin resistance. Exp. Cell Res. 359, 86–93.

    CAS  PubMed  Google Scholar 

  78. Burgos-Moron E., Abad-Jimenez Z., Maranon A.M., Iannantuoni F., Escribano-Lopez I., Lopez-Domenech S., Salom C., Jover A., Mora V., Roldan I. 2019. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues. J. Clin. Med. 8, 1385.

    CAS  PubMed Central  Google Scholar 

  79. Rodríguez-Arribas M., Yakhine-Diop S.M.S., Pedro J.M.B., Gomez-Suaga P., Gomez-Sanchez R., Martinez-Chacon G., Fuentes J.M., Gonzalez-Polo R.A., Niso-Santano M. 2017. Mitochondria-associated membranes (MAMs): Overview and its role in Parkinson’s disease. Mol. Neurobiol. 54, 6287–6303.

    PubMed  Google Scholar 

  80. Haile Y., Deng X., Ortiz-Sandova C., Tahbaz N., Janowicz A., Lu J.-Q., Kerr B.J., Gutowski N.J., Holley J.E., Eggleton P., Giuliani F., Simmen T. 2017. Rab32 connects ER stress to mitochondrial defects in multiple sclerosis. J. Neuroinflammation. 14, 19.

    PubMed  PubMed Central  Google Scholar 

  81. Delfina L., Pera M., Gonnelli, Quintana-Cabrera R., Akman H.O, Guardia-Laquarta C., Velasco K.R., Area-Gomez E., Dal Bello F., Stefani D., Horvath R., Shy M., Schon M., Giacomello M. 2019. MFN2 mutations in Charcot–Marie–Tooth disease alter mitochondria-associated ER membrane function but do not impair bioenergetics. Hum. Mol. Genetics. 28, 1782–1800.

    Google Scholar 

  82. Paillusson S., Stoica R., Gomez-Suaga P., Lau D.H.W., Mueller S., Miller T., Miller C.C.J. 2016. There’s something wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases. Trends Neurosci. 39, 146–157.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Manfredi G., Kawamata H. 2016. Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis. Neurobiol. Dis. 90, 35–42.

    CAS  PubMed  Google Scholar 

  84. Reijonen S., Putkonen N., Norremolle A., Lindholm D., Korhonen L. 2008. Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant Huntingtin proteins. Exp. Cell Res. 314, 950–960.

    CAS  PubMed  Google Scholar 

  85. Eysert F., Kinoshita P.F., Mary A., Vaillant-Beuchot L., Checler F., Chami M. 2020. Molecular dysfynctions of mitochondria-associated membranes (MAMs) in Alzheimer’s disease. Int. J. Mol. Sci. 21(24), 9521.

    CAS  PubMed Central  Google Scholar 

  86. Hyrskyluoto A., Pulli I., Tornqvist K., Ho TH., Korhonen L., Lindholm D. 2013. Sigma-1 receptor agonist PRE084 is protective against mutant Huntingtin-induced cell degeneration: Involvement of calpastatin and the NF-kappaB pathway. Cell Death Dis. 4, e646.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Penke B., Fulop L., Szucs M., Frecska E. 2018. The role of sigma-1 receptor, an intracellular chaperone in neurodegenerative diseases. Curr. Neuropharmacol. 16, 97.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ryskamp DA., Korban S., Zhemkov V., Kraskovskaya N., Bezprozvanny I. 2019. Neuronal sigma-1 receptors: signaling functions and protective roles in neurodegenerative diseases. Front. Neurosci. 13, 862.

    PubMed  PubMed Central  Google Scholar 

  89. Hayashi T., Su T.P. 2007. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell. 131, 596–610.

    CAS  PubMed  Google Scholar 

  90. Zarei S., Carr K., Reiley L., Diaz K., Guerra O., Altamirano P. F., Pagani W., Lodin D., Orozco G., Chinea A. 2015. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int. 6, 171.

    PubMed  PubMed Central  Google Scholar 

  91. Ryan B.J., Hoek S., Fon EA., Wade-Martins R. 2015. Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem. Sci. 40, 200–210.

    CAS  PubMed  Google Scholar 

  92. Apicco D.J., Shlevkov E., Nezich C.L., Tran D.T., Guilmette E., Nicholatos J.W., Bantle C.M., Chen Y., Glajch K.E., Abraham N.A., Dang L.T., Kaynor G.C., Tsai E.A., Nguyen K.H., Groot J., et al. 2021. The Parkinson’s disease-associated gene ITPKB protects against α-synuclein aggregation by regulating ER-to-mitochondria calcium release. Proc. Natl. Acad. Sci. U. S. A. 118 (1), e2006476118.

    CAS  PubMed  Google Scholar 

  93. Sukhorukov V.S., Voronkova A.S., Litvinova N.A., Baranich T.I., Illarioshkin S.N. 2020. The role of mitochondrial DNA individuality in the pathogenesis of Parkinson’s disease. Russ. J. Genet. 56 (4), 402–409.

    CAS  Google Scholar 

  94. Ozcan L., Tabas I. 2012. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev. Med. 63, 317–328.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gómez-Suaga P., Pedro J.M., González-Polo R.A., Fuentes J., Niso-Santano M. 2018. ER–mitochondria signaling in Parkinson’s disease. Cell Death Dis. 9, 337.

    PubMed  PubMed Central  Google Scholar 

  96. Guardia-Laguarta C., Area-Gomez E., Rub C., Liu Y., Magrane J., Becker D., Voos W., Schon E.A., Przedborski S. 2014. Alpha-synuclein is localized to mitochondria-associated ER membranes. J. Neuroscience. 34, 249–259.

    CAS  Google Scholar 

  97. Cali T., Ottolini D., Negro A., Brini M. 2012. Alpha-synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum–mitochondria interactions. J. Biol. Chem. 287, 17914–17929.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sun X., Liu J., Crary J.F., Malagelada C., Sulzer D., Greene L.A., Levy O.A. 2013. ATF4 protects against neuronal death in cellular Parkinson’s disease models by maintaining levels of parkin. J. Neurosci. 33, 2398–2407.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bouman L., Schlierf A., Lutz A.K., Shan J., Deinlein A., Kast J., Galehdar Z., Palmisano V., Patenge N., Berg D., Gasser T., Augustin R., Trumbach D., Irrcher I., Park D.S., et al. 2011. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 18, 769–782.

    CAS  PubMed  Google Scholar 

  100. Cali T., Ottolini D., Negro A., Brini M. 2013. Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca2+ transfer to sustain cell bioenergetics. Biochim. Biophys. Acta. 4, 495–508.

    Google Scholar 

  101. Wu S., Lei L., Song Y., Liu M., Lu S., Lou S., Shi Y., Wang Z., He D. 2018. Mutation of hop-1 and pink-1 attenuates vulnerability of neurotoxicity in C. elegans: the role of mitochondria-associated membrane proteins in Parkinsonism. Exp. Neurology. 309, 67–78.

    CAS  Google Scholar 

  102. Ottolini D., Cali T., Negro A., Brini M. 2013. The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering. Hum. Mol. Genet. 11, 2152–2168.

    Google Scholar 

  103. Gómez-Suaga P., Bravo-San Pedro J.M., González-Polo R.A., Fuentes JM., Nino-Santano M. 2018. ER–mitochondria signaling in Parkinson’s disease. Cell Death Dis. 9, 337.

    PubMed  PubMed Central  Google Scholar 

  104. Sun D., Chen X., Gu G., Wang J., Zhang J. 2017. Potential roles of mitochondria-associated ER membranes (MAMs) in traumatic brain injury. Cell. Mol. Neurobiol. 37(8), 1349–1357.

    CAS  PubMed  Google Scholar 

  105. Marchi S., Bittremieux M., Missiroli S., Morganti C., Patergnani S., Sbano L., Rimessi A., Kerkhofs M., Parys J.B., Bultynck G., Giorgi C., Pinton P. 2017. Endoplasmic reticulum-mitochondria communication through Ca2+ signaling: the importance of mitochondria-associated membranes (MAMs). Adv. Exp. Med. Biol. 997, 49–67.

    CAS  PubMed  Google Scholar 

  106. Watanabe S., Ilieva H., Tamada H., Nomura H., Komine O., Endo F., Jin S., Mancias P., Kiyama H., Yamanaka K. 2016. Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1-and SOD1- linked ALS. EMBO Mol. Med. 8, 1421–1437.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Yonashiro R., Sugiura A., Miyachi M., Fukuda T., Matsushita N., Inatome R., Ogata Y., Suzuki T., Dohmae N., Yanagi S. 2009. Mitochondrial ubiquitin ligase MITOL ubiquitinates mutant SOD1 and attenuates mutant SOD1-induced reactive oxygen species generation. Mol. Biol. Cell. 20, 4524–4530.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Nishimura A.L., Mitne-Neto M., Silva H.C.A., Richieri-Costa A., Middleton S., Cascio D., Kok F., Oliveira J.R.M., Gillingwater T., Webb J., Skehel P., Zatz M. 2004. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 75, 822–831.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Anagnostou G., Akbar M.T., Paul P., Angelinetta C., Steiner T.J., de Belleroche J. 2014. Vesicle associated membrane protein B (VAPB) is decreased in ALS spinal cord. Neurobiol. Aging. 31, 969–985.

    Google Scholar 

  110. Kim J.Y., Jang A., Reddy R., Yoon W.H., Jankowsky J.L. 2016. Neuronal overexpression of human VAPB slows motor impairment and neuromuscular denervation in a mouse model of ALS. Hum. Mol. Genet. 25, 4661–4673.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Haile Y., Deng X., Ortiz-Sandova C., Tahbaz N., Janowicz A., Lu J-Q., Kerr B.J., Gutowski N.J., Holley J.E., Eggleton P., Giuliani F., Simmen T. 2017. Rab32 connects ER stress to mitochondrial defects in multiple sclerosis. J. Neuroinflam. 14, 19.

    Google Scholar 

  112. Völgyi K., Badics K., Sialana F.J., Gulyassy P., Udvari E.B., Kis V., Drahos L., Lubec G., Kekesi K.A., Juhasz G. 2018. Early presymptomatic changes in the proteome of mitochondria-associated membrane in the APP/PS1 mouse model of Alzheimer’s disease. Mol. Neurobiol. 55, 7839–7857.

    PubMed  Google Scholar 

  113. Contino S., Porporato P.E., Bird M., Marinangeli C., Opsomer R., Sonveaux P., Bontemps F., Dewachter I., Octave J.-N., Bertrand L., Stanga S., Kienlen-Campard P. 2017. Presenilin 2-dependent maintenance of mitochondrial oxidative capacity and morphology. Front. Physiol. 8, 796.

    PubMed  PubMed Central  Google Scholar 

  114. Zampese E., Fasolato C., Kipanyula M.J., Bortolozzi M., Pozzan T., Pizzo P. 2011. Presenilin 2 modulates endoplasmic reticulum (ER)–mitochondria interactions and Ca2+ cross-talk. Proc. Natl. Acad. Sci. U. S. A. 108, 2777–2782.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Erpapazoglou Z., Mouton-Liger F., Corti O. 2017. From dysfunctional endoplasmic reticulum–mitochondria coupling to neurodegeneration. Neurochem. Int. 109, 171–183.

    CAS  PubMed  Google Scholar 

  116. De Brito O.M., Scorrano L. 2008. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 456, 605–610.

    PubMed  Google Scholar 

  117. Area-Gomez E., Del Carmen Lara Castillo M., Tambini M.D., Guardia-Laguarta C., de Groof A.J., Madra M., Ikenouchi J., Umeda M., Bird T.D., Sturley S.L., Schon E.A. 2012. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106–4123.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Voelker D.R. 2005. Bridging gaps in phospholipid transport. Trends Biochem. Sci. 30, 396–404.

    CAS  PubMed  Google Scholar 

  119. Area-Gomez E., Schon E.A. 2016. Mitochondria-associated ER membranes and Alzheimer disease. Curr. Opin. Genet. Dev. 38, 90–96.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Baranich.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhorukov, V.S., Voronkova, A.S., Baranich, T.I. et al. Molecular Mechanisms of Interactions between Mitochondria and the Endoplasmic Reticulum: A New Look at How Important Cell Functions are Supported. Mol Biol 56, 59–71 (2022). https://doi.org/10.1134/S0026893322010071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322010071

Keywords:

Navigation