Skip to main content
Log in

Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

Epigenetic regulation is hereditary and non-hereditary changes in the expression of a particular gene without any corresponding structural changes in its nucleotide sequence. Genomic imprinting is an epigenetic mechanism for regulating the expression of homologous genes depending on parental origin, i.e., they are expressed monoallelically in the mammalian diploid cell. Being genetically imprinted, only the maternal or only the paternal genome is unable to ensure normal embryonic development. The most studied epigenetic modification, which plays one of the main roles in the maintenance of imprinting processes, is the specific methylation of cytosine in CpG-dinucleotides. All known imprinted genes contain differential DNA methylation regions on homologous parent chromosomes, which are necessary for their monoallelic expression. However, it is now known that not only DNA methylation, but chromatin remodeling, histone modifications, and non-coding RNAs also ensure the proper functioning of imprinted genes in the human body. Structural and functional disturbances of epigenetic mechanisms lead to imprinting diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. McGrath J., Solter D. 1984. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 37, 179–183.

    CAS  PubMed  Google Scholar 

  2. Surani M.A., Barton S.C., Norris M.L. 1984. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 308, 548–550.

    CAS  PubMed  Google Scholar 

  3. Sazhenova E.A., Lebedev I.N. 2021. Evolutionary aspects of genomic imprinting. Mol. Biol. (Moscow). 55 (1), 1–16.

    CAS  Google Scholar 

  4. Monk D., Mackay D.J.G., Eggermann T., Maher E.R., Riccio A. 2019. Genomic imprinting disorders: Lessons on how genome, epigenome and environment interact. Nat. Rev. Genet. 20, 235–248.

    CAS  PubMed  Google Scholar 

  5. Singh P., Wu X., Lee D.-H., Li A.X., Rauch T.A., Pfeifer G.P., Mann J.R., Szabó P.E. 2011. Chromosome-wide analysis of parental allele-specific chromatin and DNA methylation. Mol. Cell. Biol. 31, 1757–1770.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanli I., Feil R. 2015. Chromatin mechanisms in the developmental control of imprinted gene expression. Int. J. Biochem. Cell. Biol. 67, 139–147.

    CAS  PubMed  Google Scholar 

  7. Kota S.K., Llères D., Bouschet T., Hirasawa R., Marchand A., Begon-Pescia C., Sanli I., Arnaud P., Journot L., Girardot M., Feil R. 2014. ICR noncoding RNA expression controls imprinting and DNA replication at the Dlk1–Dio3 domain. Dev. Cell. 31, 19–33.

    CAS  PubMed  Google Scholar 

  8. Kanduri C. 2016. Long noncoding RNAs: Lessons from genomic imprinting. Biochim. Biophys. Acta. 1859, 102–111.

    CAS  PubMed  Google Scholar 

  9. Abi Habib W., Brioude F., Azzi S., Rossignol S., Linglart A., Sobrier M-L., Giabicani É., Steunou V., Harbison M.D., Le Bouc Y., Netchine I. 2019. Transcriptional profiling at the DLK1/MEG3 domain explains clinical overlap between imprinting disorders. Sci. Adv. 5, eaau9425.

  10. MacDonald W.A., Mann M.R.W. 2020. Long noncoding RNA functionality in imprinted domain regulation. PLoS Genet. 16, e1008930.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Horsthemke B. 2014. In brief: genomic imprinting and imprinting diseases. J. Pathol. 232, 485–487.

    CAS  PubMed  Google Scholar 

  12. Barlow D.P., Bartolomei M.S. 2014. Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6 (2), a018382. https://doi.org/10.1101/cshperspect.a018382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tucci V., Isles A.R., Kelsey G., Ferguson-Smith A.C., Erice Imprinting Group. 2019. Genomic imprinting and physiological processes in mammals. Cell. 176, 952–965.

    CAS  PubMed  Google Scholar 

  14. Patten M.M., Cowley M., Oakey R.J., Feil R. 2016. Regulatory links between imprinted genes: Evolutionary predictions and consequences. Proc. Biol. Sci. 283 (1824), 20152760. https://doi.org/10.1098/rspb.2015.2760

    Article  CAS  Google Scholar 

  15. Jadhav B., Monajemi R., Gagalova K.K., Ho D., Draisma H.H.M., van de Wiel M.A., Franke L., Heijmans B.T., van Meurs J., Jansen R., GoNL Consortium, BIOS Consortium, ’t Hoen PAC, Sharp A.J., Kiełbasa S.M. 2019. RNA-Seq in 296 phased trios provides a high-resolution map of genomic imprinting. BMC Biol. 17, 50.

    PubMed  PubMed Central  Google Scholar 

  16. Chaves T.F., Oliveira L.F., Ocampos M., Barbato I.T., de Luca G.R., Barbato Filho J.H., de Camargo Pinto L.L., Bernardi P., Maris A.F. 2019. Long contiguous stretches of homozygosity detected by chromosomal microarrays (CMA) in patients with neurodevelopmental disorders in the South of Brazil. BMC Med. Genomics. 12, 50.

    PubMed  PubMed Central  Google Scholar 

  17. Elbracht M., Mackay D., Begemann M., Kagan K.O., Eggermann T. 2020. Disturbed genomic imprinting and its relevance for human reproduction: Causes and clinical consequences. Hum. Reprod. Update. 26, 197–213.

    CAS  PubMed  Google Scholar 

  18. Cerrato F., Sparago A., Ariani F., Brugnoletti F., Calzari L., Coppedè F., De Luca A., Gervasini C., Giardina E., Gurrieri F., Lo Nigro C., Merla G., Miozzo M., Russo S., Sangiorgi E., et al. 2020. DNA methylation in the diagnosis of monogenic diseases. Genes (Basel). 11 (4), 355. https://doi.org/10.3390/genes11040355

    Article  CAS  PubMed Central  Google Scholar 

  19. Temple I.K., Mackay D.J. 1993. Diabetes mellitus, 6q24-related transient neonatal. In: GeneReviews. Eds Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J., Mirzaa G., Amemiya A. Seattle (WA): Univ. of Washington, 1993–2021. https://www.ncbi. nlm.nih.gov/books/NBK1534/

    Google Scholar 

  20. Temple I.K., Gardner R.J., Robinson D.O., Kibirige M.S., Ferguson A.W., Baum J.D., Barber J.C., James R.S., Shield J.P. 1996. Further evidence for an imprinted gene for neonatal diabetes localised to chromosome 6q22–q23. Hum. Mol. Genet. 5, 1117–1121.

    CAS  PubMed  Google Scholar 

  21. Gardner R.J., Mackay D.J., Mungall A.J., Polychronakos C., Siebert R., Shield J.P., Temple I.K., Robinson D.O. 2000. An imprinted locus associated with transient neonatal diabetes mellitus. Hum. Mol. Genet. 9, 589–596.

    CAS  PubMed  Google Scholar 

  22. Su H.-C., Wu S.-C., Yen L.-C., Chiao L.-K., Wang J.-K., Chiu Y.-L., Ho C.-L., Huang S.-M. 2020. Gene expression profiling identifies the role of Zac1 in cervical cancer metastasis. Sci. Rep. 10, 11837.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoffmann A., Spengler D. 2015. Role of ZAC1 in transient neonatal diabetes mellitus and glucose metabolism. World J. Biol. Chem. 6, 95–109.

    PubMed  PubMed Central  Google Scholar 

  24. Iglesias-Platas I., Court F., Camprubi C., Sparago A., Guillaumet-Adkins A., Martin-Trujillo A., Riccio A., Moore G.E., Monk D. 2013. Imprinting at the PLAGL1 domain is contained within a 70-kb CTCF/cohesin-mediated non-allelic chromatin loop. Nucleic Acids Res. 41, 2171–2179.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Varrault A., Dantec C., Le Digarcher A., Chotard L., Bilanges B., Parrinello H., Dubois E., Rialle S., Severac D., Bouschet T., Journot L. 2017. Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network. Nucleic Acids Res. 45, 10466–10480.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mackay D.J.G., Coupe A.-M., Shield J.P.H., Storr J.N.P., Temple I.K., Robinson D.O. 2002. Relaxation of imprinted expression of ZAC and HYMAI in a patient with transient neonatal diabetes mellitus. Hum. Genet. 110, 139–144.

    CAS  PubMed  Google Scholar 

  27. Touati A., Errea-Dorronsoro J., Nouri S., Halleb Y., Pereda A., Mahdhaoui N., Ghith A., Saad A., Perez de Nanclares G., H′mida Ben Brahim D. 2019. Transient neonatal diabetes mellitus and hypomethylation at additional imprinted loci: Novel ZFP57 mutation and review on the literature. Acta Diabetol. 56, 301–307.

    CAS  PubMed  Google Scholar 

  28. Kerr E.R., Stuhlmiller G.M., Maha G.C., Ladd M.A., Mikhail F.M., Koester R.P., Hurst A.C.E. 2018. Maternal uniparental isodisomy for chromosome 6 discovered by paternity testing: a case report. Mol. Cytogenet. 11, 60.

    PubMed  PubMed Central  Google Scholar 

  29. Court F., Camprubi C., Garcia C.V., Guillaumet-Adkins A., Sparago A., Seruggia D., Sandoval J., Esteller M., Martin-Trujillo A., Riccio A., Montoliu L., Monk D. 2014. The PEG13-DMR and brain-specific enhancers dictate imprinted expression within the 8q24 intellectual disability risk locus. Epigenetics Chromatin. 7, 5.

    PubMed  PubMed Central  Google Scholar 

  30. Ruf N., Bähring S., Galetzka D., Pliushch G., Luft F.C., Nürnberg P., Haaf T., Kelsey G., Zechner U. 2007. Sequence-based bioinformatic prediction and QUASEP identify genomic imprinting of the KCNK9 potassium channel gene in mouse and human. Hum. Mol. Genet. 16, 2591–2599.

    CAS  PubMed  Google Scholar 

  31. Liang Z.S., Cimino I., Yalcin B., Raghupathy N., Vancollie V.E., Ibarra-Soria X., Firth H.V., Rimmington D., Farooqi I.S., Lelliott C.J., Munger S.C., O’Rahilly S., Ferguson-Smith A.C., Coll A.P., Logan D.W. 2020. Trappc9 deficiency causes parent-of-origin dependent microcephaly and obesity. PLoS Genet. 16, e1008916.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zadeh N., Graham J.M. 1993. KCNK9 imprinting syndrome. In: GeneReviews. Eds. Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J., Mirzaa G., Amemiya A. Seattle (WA): Univ. of Washington, 1993–2021. https://www.ncbi.nlm.nih.gov/ books/NBK425128/

    Google Scholar 

  33. Graham J.M., Zadeh N., Kelley M., Tan E.S., Liew W., Tan V., Deardorff M.A., Wilson G.N., Sagi-Dain L., Shalev S.A. 2016. KCNK9 imprinting syndrome-further delineation of a possible treatable disorder. Am. J. Med. Genet. A. 170, 2632–2637.

    CAS  PubMed  Google Scholar 

  34. Šedivá M., Laššuthová P., Zámečník J., Sedláčková L., Seeman P., Haberlová J. 2020. Novel variant in the KCNK9 gene in a girl with Birk Barel syndrome. Eur. J. Med. Genet. 63, 103619.

    PubMed  Google Scholar 

  35. Kashevarova A.A., Nikitina T.V., Mikhailik L.I., Belyaeva E.O., Vasilyev S.A., Lopatkina M.E., Fedotov D.A., Fonova E.A., Zarubin A.A., Sivtsev A.A., Skryabin N.A., Nazarenko L.P., Lebedev I.N. 2020. 46,XY,r(8)/45,XY,-8 mosaicism as a possible mechanism of the imprinted Birk–Barel syndrome: A case study. Genes (Basel). 11(12), 1473. https://doi.org/10.3390/genes11121473

    Article  CAS  PubMed Central  Google Scholar 

  36. Besson A., Dowdy S.F., Roberts J.M. 2008. CDK inhibitors: Cell cycle regulators and beyond. Dev. Cell. 14, 159–169.

    CAS  PubMed  Google Scholar 

  37. Creff J., Besson A. 2020. Functional versatility of the CDK inhibitor p57Kip2. Front. Cell. Dev. Biol. 8, 584590.

    PubMed  PubMed Central  Google Scholar 

  38. Neyroud N., Richard P., Vignier N., Donger C., Denjoy I., Demay L., Shkolnikova M., Pesce R., Chevalier P., Hainque B., Coumel P., Schwartz K., Guicheney P. 1999. Genomic organization of the KCNQ1 K+ channel gene and identification of C-terminal mutations in the long-QT syndrome. Circ. Res. 84, 290–297.

    CAS  PubMed  Google Scholar 

  39. Mitsuya K., Meguro M., Lee M.P., Katoh M., Schulz T.C., Kugoh H., Yoshida M.A., Niikawa N., Feinberg A.P., Oshimura M. 1999. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum. Mol. Genet. 8, 1209–1217.

    CAS  PubMed  Google Scholar 

  40. Pandey R.R., Mondal T., Mohammad F., Enroth S., Redrup L., Komorowski J., Nagano T., Mancini-Dinardo D., Kanduri C. 2008. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell. 32, 232–246.

    CAS  PubMed  Google Scholar 

  41. Kanduri C. 2011. Kcnq1ot1: A chromatin regulatory RNA. Semin. Cell Dev. Biol. 22, 343–350.

    CAS  PubMed  Google Scholar 

  42. Monk D., Sanches R., Arnaud P., Apostolidou S., Hills F.A., Abu-Amero S., Murrell A., Friess H., Reik W., Stanier P., Constância M., Moore G.E. 2006. Imprinting of IGF2 P0 transcript and novel alternatively spliced INS-IGF2 isoforms show differences between mouse and human. Hum. Mol. Genet. 15, 1259–1269.

    CAS  PubMed  Google Scholar 

  43. Ghafouri-Fard S., Esmaeili M., Taheri M. 2020. H19 lncRNA: Roles in tumorigenesis. Biomed. Pharmacother. 123, 109774.

    CAS  PubMed  Google Scholar 

  44. Jinno Y., Ikeda Y., Yun K., Maw M., Masuzaki H., Fukuda H., Inuzuka K., Fujishita A., Ohtani Y., Okimoto T. 1995. Establishment of functional imprinting of the H19 gene in human developing placentae. Nat. Genet. 10, 318–324.

    CAS  PubMed  Google Scholar 

  45. Higashimoto K., Jozaki K., Kosho T., Matsubara K., Fuke T., Yamada D., Yatsuki H., Maeda T., Ohtsuka Y., Nishioka K., Joh K., Koseki H., Ogata T., Soejima H. 2014. A novel de novo point mutation of the OCT-binding site in the IGF2/H19-imprinting control region in a Beckwith–Wiedemann syndrome patient. Clin. Genet. 86, 539–544.

    CAS  PubMed  Google Scholar 

  46. Hark A.T., Schoenherr C.J., Katz D.J., Ingram R.S., Levorse J.M., Tilghman S.M. 2000. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. 405, 486–489.

    CAS  PubMed  Google Scholar 

  47. Nativio R., Sparago A., Ito Y., Weksberg R., Riccio A., Murrell A. 2011. Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith–Wiedemann syndrome and Silver–Russell syndrome. Hum. Mol. Genet. 20, 1363–1374.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lopes S., Lewis A., Hajkova P., Dean W., Oswald J., Forné T., Murrell A., Constância M., Bartolomei M., Walter J., Reik W. 2003. Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions. Hum. Mol. Genet. 12, 295–305.

    CAS  PubMed  Google Scholar 

  49. Lee M.P., DeBaun M.R., Mitsuya K., Galonek H.L., Brandenburg S., Oshimura M., Feinberg A.P. 1999. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith–Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc. Natl. Acad. Sci. U. S. A. 96, 5203–5208.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mancini-Dinardo D., Steele S.J.S., Levorse J.M., Ingram R.S., Tilghman S.M. 2006. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 20, 1268–1282.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferrero G.B., Boonen S.E., Cole T., Baker R., Bertoletti M., Cocchi G., Coze C., De Pellegrin M., Hussain K., Ibrahim A., et al. 2018. Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: An international consensus statement. Nat. Rev. Endocrinol. 14, 229–249.

    PubMed  PubMed Central  Google Scholar 

  52. Wang K.H., Kupa J., Duffy K.A., Kalish J.M. 2019. Diagnosis and management of Beckwith–Wiedemann syndrome. Front. Pediatr. 7, 562.

    CAS  PubMed  Google Scholar 

  53. Eggermann T., Brück J., Knopp C., Fekete G., Kratz C., Tasic V., Kurth I., Elbracht M., Eggermann K., Begemann M. 2020. Need for a precise molecular diagnosis in Beckwith–Wiedemann and Silver–Russell syndrome: What has to be considered and why it is important. J. Mol. Med. (Berl.). 98, 1447–1455.

    CAS  PubMed Central  Google Scholar 

  54. Papulino C., Chianese U., Nicoletti M.M., Benedetti R., Altucci L. 2020. Preclinical and clinical epigenetic-based reconsideration of Beckwith–Wiedemann syndrome. Front. Genet. 11, 563718.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Fontana L., Bedeschi M.F., Maitz S., Cereda A., Faré C., Motta S., Seresini A., D′Ursi P., Orro A., Pecile V., Calvello M., Selicorni A., Lalatta F., Milani D., Sirchia S.M., et al. 2018. Characterization of multi-locus imprinting disturbances and underlying genetic defects in patients with chromosome 11p15.5 related imprinting disorders. Epigenetics. 13, 897–909.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nemtsova M.V., Strel’nikov V.V., Babenko S.V., Zemlyakova V.V., Zaletaev D.V. 2005. Molecular diagnosis of epigenetic disorders in Beckwith–Wiedemann syndrome. Med. Genet. 4, 33–38.

    CAS  Google Scholar 

  57. Chang S., Bartolomei M.S. 2020. Modeling human epigenetic disorders in mice: Beckwith–Wiedemann syndrome and Silver–Russell syndrome. Dis. Model. Mech. 13 (5), dmm044123. https://doi.org/10.1242/dmm.044123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yamaguchi Y., Tayama C., Tomikawa J., Akaishi R., Kamura H., Matsuoka K., Wake N., Minakami H., Kato K., Yamada T., Nakabayashi K., Hata K. 2019. Placenta-specific epimutation at H19-DMR among common pregnancy complications: Its frequency and effect on the expression patterns of H19 and IGF2. Clin. Epigenetics. 11, 113.

    PubMed  PubMed Central  Google Scholar 

  59. Brioude F., Netchine I., Praz F., Le Jule M., Calmel C., Lacombe D., Edery P., Catala M., Odent S., Isidor B., Lyonnet S., Sigaudy S., Leheup B., Audebert-Bellanger S., Burglen L., et al. 2015. Mutations of the imprinted CDKN1C gene as a cause of the overgrowth Beckwith–Wiedemann syndrome: Clinical spectrum and functional characterization. Hum. Mutat. 36, 894–902.

    CAS  PubMed  Google Scholar 

  60. Eggermann T., Begemann M., Pfeiffer L. 2021. Unusual deletion of the maternal 11p15 allele in Beckwith–Wiedemann syndrome with an impact on both imprinting domains. Clin. Epigenetics. 13, 30.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun F.L., Dean W.L., Kelsey G., Allen N.D., Reik W. 1997. Transactivation of Igf2 in a mouse model of Beckwith–Wiedemann syndrome. Nature. 389, 809–815.

    CAS  PubMed  Google Scholar 

  62. Wakeling E.L., Brioude F., Lokulo-Sodipe O., O’Connell S.M., Salem J., Bliek J., Canton A.P.M., Chrzanowska K.H., Davies J.H., Dias R.P., Dubern B., Elbracht M., Giabicani E., Grimberg A., Grønskov K., et al. 2017. Diagnosis and management of Silver–Russell syndrome: First international consensus statement. Nat. Rev. Endocrinol. 13, 105–124.

    CAS  PubMed  Google Scholar 

  63. Lokulo-Sodipe O., Ballard L., Child J., Inskip H.M., Byrne C.D., Ishida M., Moore G.E., Wakeling E.L., Fenwick A., Mackay D.J.G., Davies J.H., Temple I.K. 2020. Phenotype of genetically confirmed Silver–Russell syndrome beyond childhood. J. Med. Genet. 57, 683–691.

    PubMed  Google Scholar 

  64. Tümer Z., López-Hernández J.A., Netchine I., Elbracht M., Grønskov K., Gede L.B., Sachwitz J., den Dunnen J.T., Eggermann T. 2018. Structural and sequence variants in patients with Silver–Russell syndrome or similar features – curation of a disease database. Hum. Mutat. 39, 345–364.

    PubMed  Google Scholar 

  65. Forbes B.E., Blyth A.J., Wit J.M. 2020. Disorders of IGFs and IGF-1R signaling pathways. Mol. Cell. Endocrinol. 518, 111035.

    CAS  PubMed  Google Scholar 

  66. Dörr S., Midro A.T., Färber C., Giannakudis J., Hansmann I. 2001. Construction of a detailed physical and transcript map of the candidate region for Russell–Silver syndrome on chromosome 17q23–q24. Genomics. 71, 174–181.

    PubMed  Google Scholar 

  67. Chiesa N., De Crescenzo A., Mishra K., Perone L., Carella M., Palumbo O., Mussa A., Sparago A., Cerrato F., Russo S., Lapi E., Cubellis M.V., Kanduri C., Cirillo Silengo M., Riccio A., Ferrero G.B. 2012. The KCNQ1OT1 imprinting control region and non-coding RNA: New properties derived from the study of Beckwith–Wiedemann syndrome and Silver–Russell syndrome cases. Hum. Mol. Genet. 21, 10–25.

    PubMed  Google Scholar 

  68. Cytrynbaum C., Chong K., Hannig V., Choufani S., Shuman C., Steele L., Morgan T., Scherer S.W., Stavropoulos D.J., Basran R.K., Weksberg R. 2016. Genomic imbalance in the centromeric 11p15 imprinting center in three families: Further evidence of a role for IC2 as a cause of Russell–Silver syndrome. Am. J. Med. Genet A. 170, 2731–2739.

    CAS  PubMed  Google Scholar 

  69. Gicquel C., Rossignol S., Cabrol S., Houang M., Steunou V., Barbu V., Danton F., Thibaud N., Le Merrer M., Burglen L., Bertrand A.-M., Netchine I., Le Bouc Y. 2005. Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver–Russell syndrome. Nat. Genet. 37, 1003–1007.

    CAS  PubMed  Google Scholar 

  70. Inoue T., Nakamura A., Iwahashi-Odano M., Tanase-Nakao K., Matsubara K., Nishioka J., Maruo Y., Hasegawa Y., Suzumura H., Sato S., Kobayashi Y., Murakami N., Nakabayashi K., Yamazawa K., Fuke T., et al. 2020. Contribution of gene mutations to Silver–Russell syndrome phenotype: Multigene sequencing analysis in 92 etiology-unknown patients. Clin. Epigenet. 12, 86.

    CAS  Google Scholar 

  71. Saal H.M., Harbison M.D., Netchine I. 1993. Silver–Russell syndrome. In: GeneReviews. Eds Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J., Mirzaa G., Amemiya A. Seattle (WA): Univ. of Washington, 1993–2021. https://www.ncbi.nlm.nih.gov/ books/NBK1324/

    Google Scholar 

  72. Hannula-Jouppi K., Muurinen M., Lipsanen-Nyman M., Reinius L.E., Ezer S., Greco D., Kere J. 2014. Differentially methylated regions in maternal and paternal uniparental disomy for chromosome 7. Epigenetics. 9, 351–365.

    CAS  PubMed  Google Scholar 

  73. Hitchins M.P., Monk D., Bell G.M., Ali Z., Preece M.A., Stanier P., Moore G.E. 2001. Maternal repression of the human GRB10 gene in the developing central nervous system; evaluation of the role for GRB10 in Silver–Russell syndrome. Eur. J. Hum. Genet. 9, 82–90.

    CAS  PubMed  Google Scholar 

  74. Schöherr N., Jäger S., Ranke M.B., Wollmann H.A., Binder G., Eggermann T. 2008. No evidence for isolated imprinting mutations in the PEG1/MEST locus in Silver–Russell patients. Eur. J. Med. Genet. 51, 322–324.

    PubMed  Google Scholar 

  75. Su J., Wang J., Fan X., Fu C., Zhang S., Zhang Y., Qin Z., Li H., Luo J., Li C., Jiang T., Shen Y. 2017. Mosaic UPD(7q)mat in a patient with Silver–Russell syndrome. Mol. Cytogenet. 10, 36.

    PubMed  PubMed Central  Google Scholar 

  76. Brioude F., Oliver-Petit I., Blaise A., Praz F., Rossignol S., Jule M.L., Thibaud N., Faussat A.-M., Tauber M., Bouc Y.L., Netchine I. 2013. CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell–Silver syndrome. J. Med. Genet. 50, 823–830.

    CAS  PubMed  Google Scholar 

  77. Sabir A.H., Ryan G., Mohammed Z., Kirk J., Kiely N., Thyagarajan M., Cole T. 2019. Familial Russell–Silver syndrome like phenotype in the PCNA domain of the CDKN1C gene, a further case. Case Rep. Genet. 2019, 1398250. https://doi.org/10.1155/2019/1398250

  78. Binder G., Ziegler J., Schweizer R., Habhab W., Haack T.B., Heinrich T., Eggermann T. 2020. Novel mutation points to a hot spot in CDKN1C causing Silver–Russell syndrome. Clin. Epigenetics. 12, 152.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rockstroh D., Pfäffle H., Le Duc D., Rößler F., Schlensog-Schuster F., Heiker J.T., Kratzsch J., Kiess W., Lemke J.R., Abou Jamra R., Pfäffle R. 2019. A new p.(Ile66Serfs*93) IGF2 variant is associated with pre- and postnatal growth retardation. Eur. J. Endocrinol. 180, K1–13.

    CAS  PubMed  Google Scholar 

  80. Masunaga Y., Inoue T., Yamoto K., Fujisawa Y., Sato Y., Kawashima-Sonoyama Y., Morisada N., Iijima K., Ohata Y., Namba N., Suzumura H., Kuribayashi R., Yamaguchi Y., Yoshihashi H., Fukami M., et al. 2020. IGF2 mutations. J. Clin. Endocrinol. Metabolism. 105, 116–125.

    Google Scholar 

  81. Hübner C.T., Meyer R., Kenawy A., Ambrozaityte L., Matuleviciene A., Kraft F., Begemann M., Elbracht M., Eggermann T. 2020. HMGA2 variants in Silver–Russell syndrome: Homozygous and heterozygous occurrence. J. Clin. Endocrinol. Metab. 105, 2401–2407.

    Google Scholar 

  82. Vado Y., Pereda A., Llano-Rivas I., Gorria-Redondo N., Díez I., Perez de Nanclares G. 2020. Novel variant in PLAG1 in a familial case with Silver–Russell syndrome suspicion. Genes. 11, 1461.

    CAS  PubMed Central  Google Scholar 

  83. Akhtar M., Holmgren C., Göndör A., Vesterlund M., Kanduri C., Larsson C., Ekström T.J. 2012. Cell type and context-specific function of PLAG1 for IGF2 P3 promoter activity. Int. J. Oncol. 41, 1959–1966.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hara-Isono K., Matsubara K., Fuke T., Yamazawa K., Satou K., Murakami N., Saitoh S., Nakabayashi K., Hata K., Ogata T., Fukami M., Kagami M. 2020. Genome-wide methylation analysis in Silver–Russell syndrome, Temple syndrome, and Prader–Willi syndrome. Clin. Epigenetics. 12, 159.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Vilain E., Le Merrer M., Lecointre C., Desangles F., Kay M.A., Maroteaux P., McCabe E.R. 1999. IMAGe, a new clinical association of intrauterine growth retardation, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital anomalies. J. Clin. Endocrinol. Metab. 84, 4335–4340.

    CAS  PubMed  Google Scholar 

  86. Borges K.S., Arboleda V.A., Vilain E. 2015. Mutations in the PCNA-binding site of CDKN1C inhibit cell proliferation by impairing the entry into S phase. Cell Div. 10, 2.

    PubMed  PubMed Central  Google Scholar 

  87. Suntharalingham J.P., Ishida M., Buonocore F., Del Valle I., Solanky N., Demetriou C., Regan L., Moore G.E., Achermann J.C. 2019. Analysis of CDKN1C in fetal growth restriction and pregnancy loss. F1000Res. 8, 90.

    PubMed  Google Scholar 

  88. Eggermann T., Binder G., Brioude F., Maher E.R., Lapunzina P., Cubellis M.V., Bergadá I., Prawitt D., Begemann M. 2014. CDKN1C mutations: Two sides of the same coin. Trends Mol Med. 20, 614–622.

    CAS  PubMed  Google Scholar 

  89. Babenko O.V., Zemlyakova V.V., Saakyan S.V., Brovkina A.F., Strelnikov V.V., Zaletaev D.V., Nemtsova M.V. 2002. RB1 and CDKN2A functional defects resulting in retinoblastoma. Mol. Biol. (Moscow) 36 (5), 625–630.

    CAS  Google Scholar 

  90. Gelli E., Pinto A.M., Somma S., Imperatore V., Cannone M.G., Hadjistilianou T., De Francesco S., Galimberti D., Currò A., Bruttini M., Mari F., Renieri A., Ariani F. 2019. Evidence of predisposing epimutation in retinoblastoma. Hum. Mutat. 40, 201–206.

    CAS  PubMed  Google Scholar 

  91. Kanber D., Berulava T., Ammerpohl O., Mitter D., Richter J., Siebert R., Horsthemke B., Lohmann D., Buiting K. 2009. The human retinoblastoma gene is imprinted. PLoS Genet. 5 (12), e1000790. https://doi.org/10.1371/journal.pgen.1000790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Buiting K., Kanber D., Horsthemke B., Lohmann D. 2010. Imprinting of RB1 (the new kid on the block). Brief Funct. Genomics. 9, 347–353.

    CAS  PubMed  Google Scholar 

  93. Taylor M., Dehainault C., Desjardins L., Doz F., Levy C., Sastre X., Couturier J., Stoppa-Lyonnet D., Houdayer C., Gauthier-Villars M. 2007. Genotype–phenotype correlations in hereditary familial retinoblastoma. Hum. Mutat. 28, 284–293.

    PubMed  Google Scholar 

  94. Eloy P., Dehainault C., Sefta M., Aerts I., Doz F., Cassoux N., Lumbroso le Rouic L., Stoppa-Lyonnet D., Radvanyi F., Millot G.A., Gauthier-Villars M., Houdayer C. 2016. A parent-of-origin effect impacts the phenotype in low penetrance retinoblastoma families segregating the c.1981C>T/p.Arg661Trp mutation of RB1. PLoS Genet. 12, e1005888.

    PubMed  PubMed Central  Google Scholar 

  95. Alekseeva E.A., Babenko O.V., Kozlova V.M., Ushakova T.L., Kazubskaya T.P., Saakyan S.V., Tanas A.S., Zaletaev D.V., Strelnikov V.V. 2019. The effect of parental origin of RB1 mutations in hereditary retinoblastoma with low penetrance. Med. Genet. 18 (8), 21–28.

    Google Scholar 

  96. Kagami M., Sekita Y., Nishimura G., Irie M., Kato F., Okada M., Yamamori S., Kishimoto H., Nakayama M., Tanaka Y., Matsuoka K., Takahashi T., Noguchi M., Tanaka Y., Masumoto K., et al. 2008. Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nat. Genet. 40, 237–242.

    CAS  PubMed  Google Scholar 

  97. Falix F.A., Aronson D.C., Lamers W.H., Gaemers I.C. 2012. Possible roles of DLK1 in the Notch pathway during development and disease. Biochim. Biophys. ActaMol. Basis Disease. 1822, 988–995.

    CAS  Google Scholar 

  98. Gomes L.G., Cunha-Silva M., Crespo R.P., Ramos C.O., Montenegro L.R., Canton A., Lees M., Spoudeas H., Dauber A., Macedo D.B., Bessa D.S., Maciel G.A., Baracat E.C., Jorge A.A.L., Mendonca B.B., et al. 2019. DLK1 is a novel link between reproduction and metabolism. J. Clin. Endocrinol. Metab. 104, 2112–2120.

    PubMed  Google Scholar 

  99. Kitazawa M., Sutani A., Kaneko-Ishino T., Ishino F. 2021. The role of eutherian-specific RTL1 in the nervous system and its implications for the Kagami–Ogata and Temple syndromes. Genes Cells. 26, 165–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Martinez M.E., Cox D.F., Youth B.P., Hernandez A. 2016. Genomic imprinting of DIO3, a candidate gene for the syndrome associated with human uniparental disomy of chromosome 14. Eur. J. Hum. Genet. 24, 1617–1621.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hamilton S., de Cabo R., Bernier M. 2020. Maternally expressed gene 3 in metabolic programming. Biochim. Biophys. Acta – Gene Regul. Mech. 1863, 194396.

    CAS  PubMed  Google Scholar 

  102. Kagami M., O′Sullivan M.J., Green A.J., Watabe Y., Arisaka O., Masawa N., Matsuoka K., Fukami M., Matsubara K., Kato F., Ferguson-Smith A.C., Ogata T. 2010. The IG-DMR and the MEG3-DMR at human chromosome 14q32.2: Hierarchical interaction and distinct functional properties as imprinting control centers. PLoS Genet. 6, e1000992.

    PubMed  PubMed Central  Google Scholar 

  103. da Rocha S.T., Edwards C.A., Ito M., Ogata T., Ferguson-Smith A.C. 2008. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet. 24, 306–316.

    PubMed  Google Scholar 

  104. Ioannides Y., Lokulo-Sodipe K., Mackay D.J.G., Davies J.H., Temple I.K. 2014. Temple syndrome: Improving the recognition of an underdiagnosed chromosome 14 imprinting disorder: An analysis of 51 published cases. J. Med. Genet. 51, 495–501.

    CAS  PubMed  Google Scholar 

  105. Kagami M., Nagasaki K., Kosaki R., Horikawa R., Naiki Y., Saitoh S., Tajima T., Yorifuji T., Numakura C., Mizuno S., Nakamura A., Matsubara K., Fukami M., Ogata T. 2017. Temple syndrome: Comprehensive molecular and clinical findings in 32 Japanese patients. Genet. Med. 19, 1356–1366.

    PubMed  PubMed Central  Google Scholar 

  106. Ogata T., Kagami M. 2016. Kagami–Ogata syndrome: A clinically recognizable upd(14)pat and related disorder affecting the chromosome 14q32.2 imprinted region. J. Hum. Genet. 61, 87–94.

    CAS  PubMed  Google Scholar 

  107. Soellner L., Begemann M., Mackay D.J.G., Grønskov K., Tümer Z., Maher E.R., Temple I.K., Monk D., Riccio A., Linglart A., Netchine I., Eggermann T. 2017. Recent advances in imprinting disorders. Clin. Genet. 91, 3–13.

    CAS  PubMed  Google Scholar 

  108. van der Werf I.M., Buiting K., Czeschik C., Reyniers E., Vandeweyer G., Vanhaesebrouck P., Lüdecke H.-J., Wieczorek D., Horsthemke B., Mortier G., Leroy J.G., Kooy R.F. 2016. Novel microdeletions on chromosome 14q32.2 suggest a potential role for non-coding RNAs in Kagami–Ogata syndrome. Eur. J. Hum. Genet. 24, 1724–1729.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Stelzer Y., Sagi I., Yanuka O., Eiges R., Benvenisty N. 2014. The noncoding RNA IPW regulates the imprinted DLK1–DIO3 locus in an induced pluripotent stem cell model of Prader–Willi syndrome. Nat. Genet. 46, 551–557.

    CAS  PubMed  Google Scholar 

  110. Cavaillé J. 2017. Box C/D small nucleolar RNA genes and the Prader–Willi syndrome: A complex interplay. Wiley Interdisc. Rev. RNA. 8 (4). https://doi.org/10.1002/wrna.1417

  111. Wang T.-S., Tsai W.-H., Tsai L.-P., Wong S.-B. 2020. Clinical characteristics and epilepsy in genomic imprinting disorders: Angelman syndrome and Prader–-Willi syndrome. Ci Ji Yi Xue Za Zhi. 32, 137–144.

    PubMed  Google Scholar 

  112. Mendiola A.J.P., LaSalle J.M. 2021. Epigenetics in Prader–Willi syndrome. Front. Genet. 12, 624581.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Christian S. 1999. Large genomic duplicons map to sites of instability in the Prader–Willi/Angelman syndrome chromosome region (15q11–q13). Hum. Mol. Genet. 8, 1025–1037.

    CAS  PubMed  Google Scholar 

  114. Nicholls R.D., Knepper J.L. 2001. Genome organization, function, and imprinting in Prader–Willi and Angelman syndromes. Annu. Rev. Genomics Hum. Genet. 2, 153–175.

    CAS  PubMed  Google Scholar 

  115. Kim S.-J., Miller J.L., Kuipers P.J., German J.R., Beaudet A.L., Sahoo T., Driscoll D.J. 2012. Unique and atypical deletions in Prader–Willi syndrome reveal distinct phenotypes. Eur. J. Hum. Genet. 20, 283–290.

    CAS  PubMed  Google Scholar 

  116. Chung M.S., Langouët M., Chamberlain S.J., Carmichael G.G. 2020. Prader–Willi syndrome: Reflections on seminal studies and future therapies. Open Biol. 10, 200195.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Butler M.G. 2020. Imprinting disorders in humans: A review. Curr. Opin. Pediatr. 32, 719–729.

    PubMed  PubMed Central  Google Scholar 

  118. Cheon C.K. 2016. Genetics of Prader–Willi syndrome and Prader–Will-like syndrome. Ann. Pediatr. Endocrinol. Metab. 21, 126–135.

    PubMed  PubMed Central  Google Scholar 

  119. Runte M., Hüttenhofer A., Gross S., Kiefmann M., Horsthemke B., Buiting K. 2001. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum. Mol. Genet. 10, 2687–2700.

    CAS  PubMed  Google Scholar 

  120. Galiveti C.R., Raabe C.A., Konthur Z., Rozhdestvensky T.S. 2014. Differential regulation of non-protein coding RNAs from Prader–Willi syndrome locus. Sci. Rep. 4, 6445.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Maina E.N., Webb T., Soni S., Whittington J., Boer H., Clarke D., Holland A. 2007. Analysis of candidate imprinted genes in PWS subjects with atypical genetics: A possible inactivating mutation in the SNURF/SNRPN minimal promoter. J. Hum. Genet. 52, 297–307.

    CAS  PubMed  Google Scholar 

  122. Green Finberg Y., Kantor B., Hershko A.Y., Razin A. 2003. Characterization of the human SNRPN minimal promoter and cis elements within it. Gene. 304, 201–206.

    CAS  PubMed  Google Scholar 

  123. Cassidy S.B., Schwartz S., Miller J.L., Driscoll D.J. 2012. Prader–Willi syndrome. Genet. Med. 14, 10–26.

    CAS  PubMed  Google Scholar 

  124. Geuns E., De Rycke M., Van Steirteghem A., Liebaers I. 2003. Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos. Hum. Mol. Genet. 12, 2873–2879.

    CAS  PubMed  Google Scholar 

  125. Meng L., Person R.E., Huang W., Zhu P.J., Costa-Mattioli M., Beaudet A.L. 2013. Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet. 9, e1004039.

    PubMed  PubMed Central  Google Scholar 

  126. Smith E.Y., Futtner C.R., Chamberlain S.J., Johnstone K.A., Resnick J.L. 2011. Transcription Is required to establish maternal imprinting at the Prader–Willi syndrome and Angelman syndrome locus. PLoS Genet. 7 (12), e1002422. https://doi.org/10.1371/journal.pgen.1002422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Buiting K., Lich C., Cottrell S., Barnicoat A., Horsthemke B. 1999. A 5-kb imprinting center deletion in a family with Angelman syndrome reduces the shortest region of deletion overlap to 880 bp. Hum. Genet. 105, 665–666.

    CAS  PubMed  Google Scholar 

  128. Lewis M.W., Brant J.O., Kramer J.M., Moss J.I., Yang T.P., Hansen P.J., Williams R.S., Resnick J.L. 2015. Angelman syndrome imprinting center encodes a transcriptional promoter. Proc. Natl. Acad. Sci. U. S. A. 112, 6871–6875.

    CAS  PubMed  Google Scholar 

  129. Lewis M.W., Vargas-Franco D., Morse D.A., Resnick J.L. 2019. A mouse model of Angelman syndrome imprinting defects. Hum. Mol. Genet. 28, 220–229.

    CAS  PubMed  Google Scholar 

  130. Wu M.-Y., Tsai T.-F., Beaudet A.L. 2006. Deficiency of Rbbp1/Arid4a and Rbbp1l1/Arid4b alters epigenetic modifications and suppresses an imprinting defect in the PWS/AS domain. Genes Dev. 20, 2859–2870.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Buiting K., Gross S., Lich C., Gillessen-Kaesbach G., el-Maarri O., Horsthemke B. 2003. Epimutations in Prader–Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am. J. Hum. Genet. 72, 571–577.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ohta T., Gray T.A., Rogan P.K., Buiting K., Gabriel J.M., Saitoh S., Muralidhar B., Bilienska B., Krajewska-Walasek M., Driscoll D.J., Horsthemke B., Butler M.G., Nicholls R.D. 1999. Imprinting-mutation mechanisms in Prader–Willi syndrome. Am. J. Hum. Genet. 64, 397–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Saitoh S., Buiting K., Cassidy S.B., Conroy J.M., Driscoll D.J., Gabriel J.M., Gillessen-Kaesbach G., Glenn C.C., Greenswag L.R., Horsthemke B., Kondo I., Kuwajima K., Niikawa N., Rogan P.K., Schwartz S., et al. 1997. Clinical spectrum and molecular diagnosis of Angelman and Prader–Willi syndrome patients with an imprinting mutation. Am. J. Med. Genet. 68, 195–206.

    CAS  PubMed  Google Scholar 

  134. Bielinska B., Blaydes S.M., Buiting K., Yang T., Krajewska-Walasek M., Horsthemke B., Brannan C.I. 2000. De novo deletions of SNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch. Nat. Genet. 25, 74–78.

    CAS  PubMed  Google Scholar 

  135. Gray T.A., Saitoh S., Nicholls R.D. 1999. An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc. Natl. Acad. Sci. U. S. A. 96, 5616–5621.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Glenn C.C., Saitoh S., Jong M.T., Filbrandt M.M., Surti U., Driscoll D.J., Nicholls R.D. 1996. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. Am. J. Hum. Genet. 58, 335–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. de los Santos T., Schweizer J., Rees C.A., Francke U. 2000. Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader–Willi deletion region, which Is highly expressed in brain. Am. J. Hum. Genet. 67, 1067–1082.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Gallagher R.C., Pils B., Albalwi M., Francke U. 2002. Evidence for the role of PWCR1/HBII-85 C/D box small nucleolar RNAs in Prader–Willi syndrome. Am. J. Hum. Genet. 71, 669–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Bortolin-Cavaille M.-L., Cavaille J. 2012. The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader–Willi locus generate canonical box C/D snoRNAs. Nucleic Acids Res. 40, 6800–6807.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Bratkovič T., Božič J., Rogelj B. 2020. Functional diversity of small nucleolar RNAs. Nucleic Acids Res. 48, 1627–1651.

    PubMed  Google Scholar 

  141. Raabe C.A., Voss R., Kummerfeld D-M., Brosius J., Galiveti C.R., Wolters A., Seggewiss J., Huge A., Skryabin B.V., Rozhdestvensky T.S. 2019. Ectopic expression of Snord115 in choroid plexus interferes with editing but not splicing of 5-Ht2c receptor pre-mRNA in mice. Sci. Rep. 9, 4300.

    PubMed  PubMed Central  Google Scholar 

  142. Leung K.N., Vallero R.O., DuBose A.J., Resnick J.L., LaSalle J.M. 2009. Imprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size. Hum. Mol. Genet. 18, 4227–4238.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Bieth E., Eddiry S., Gaston V., Lorenzini F., Buffet A., Conte Auriol F., Molinas C., Cailley D., Rooryck C., Arveiler B., Cavaillé J., Salles J.P., Tauber M. 2015. Highly restricted deletion of the SNORD116 region is implicated in Prader–Willi syndrome. Eur. J. Hum Genet. 23, 252–255.

    CAS  PubMed  Google Scholar 

  144. Powell W.T., Coulson R.L., Crary F.K., Wong S.S., Ach R.A., Tsang P., Alice Yamada N., Yasui D.H., Lasalle J.M. 2013. A Prader–Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum. Mol. Genet. 22, 4318–4328.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Coulson R.L., Yasui D.H., Dunaway K.W., Laufer B.I., Vogel Ciernia A., Zhu Y., Mordaunt C.E., Totah T.S., LaSalle J.M. 2018. Snord116-dependent diurnal rhythm of DNA methylation in mouse cortex. Nat. Commun. 9, 1616.

    PubMed  PubMed Central  Google Scholar 

  146. Wu H., Yin Q.-F., Luo Z., Yao R.-W., Zheng C.-C., Zhang J., Xiang J.-F., Yang L., Chen L.-L. 2016. Unusual processing generates SPA lncRNAs that sequester multiple RNA binding proteins. Mol. Cell. 64, 534–548.

    CAS  PubMed  Google Scholar 

  147. Yin Q.-F., Yang L., Zhang Y., Xiang J.-F., Wu Y.-W., Carmichael G.G., Chen L.-L. 2012. Long noncoding RNAs with snoRNA ends. Mol. Cell. 48, 219–230.

    CAS  PubMed  Google Scholar 

  148. Wevrick R., Kerns J.A., Francke U. 1994. Identification of a novel paternally expressed gene in the Prader–Willi syndrome region. Hum. Mol. Genet. 3, 1877–1882.

    CAS  PubMed  Google Scholar 

  149. Cavaillé J., Buiting K., Kiefmann M., Lalande M., Brannan C.I., Horsthemke B., Bachellerie J.P., Brosius J., Hüttenhofer A. 2000. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc. Natl. Acad. Sci. U. S. A. 97, 14311–14316.

    PubMed  PubMed Central  Google Scholar 

  150. Castle J.C., Armour C.D., Löwer M., Haynor D., Biery M., Bouzek H., Chen R., Jackson S., Johnson J.M., Rohl C.A., Raymond C.K. 2010. Digital genome-wide ncRNA expression, including snoRNAs, across 11 human tissues using polyA-neutral amplification. PLoS One. 5, e11779.

    PubMed  PubMed Central  Google Scholar 

  151. Chamberlain S.J., Chen P.-F., Ng K.Y., Bourgois-Rocha F., Lemtiri-Chlieh F., Levine E.S., Lalande M. 2010. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader–Willi syndromes. Proc. Natl. Acad. Sci. U. S. A. 107, 17668–17673.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Hsiao J.S., Germain N.D., Wilderman A., Stoddard C., Wojenski L.A., Villafano G.J., Core L., Cotney J., Chamberlain S.J. 2019. A bipartite boundary element restricts UBE3A imprinting to mature neurons. Proc. Natl. Acad. Sci. U. S. A. 116, 2181–2186.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wijesuriya T.M., De Ceuninck L., Masschaele D., Sanderson M.R., Carias K.V., Tavernier J., Wevrick R. 2017. The Prader–Willi syndrome proteins MAGEL2 and necdin regulate leptin receptor cell surface abundance through ubiquitination pathways. Hum. Mol. Genet. 26, 4215–4230.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Tacer K.F., Potts P.R. 2017. Cellular and disease functions of the Prader–Willi syndrome gene MAGEL2. Biochem. J. 474, 2177–2190.

    CAS  PubMed  Google Scholar 

  155. Pagliardini S., Ren J., Wevrick R., Greer J.J. 2005. Developmental abnormalities of neuronal structure and function in prenatal mice lacking the Prader–Willi syndrome gene necdin. Am. J. Pathol. 167, 175–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Wawrzik M., Spiess A.-N., Herrmann R., Buiting K., Horsthemke B. 2009. Expression of SNURF-SNRPN upstream transcripts and epigenetic regulatory genes during human spermatogenesis. Eur. J. Hum. Genet. 17, 1463–1470.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Buiting K., Nazlican H., Galetzka D., Wawrzik M., Groß S., Horsthemke B. 2007. C15orf2 and a novel noncoding transcript from the Prader–Willi/Angelman syndrome region show monoallelic expression in fetal brain. Genomics. 89, 588–595.

    CAS  PubMed  Google Scholar 

  158. Neumann L.C., Markaki Y., Mladenov E., Hoffmann D., Buiting K., Horsthemke B. 2012. The imprinted NPAP1/C15orf2 gene in the Prader–Willi syndrome region encodes a nuclear pore complex associated protein. Hum. Mol. Genet. 21, 4038–4048.

    CAS  PubMed  Google Scholar 

  159. Rougeulle C., Cardoso C., Fontés M., Colleaux L., Lalande M. 1998. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat. Genet. 19, 15–16.

    CAS  PubMed  Google Scholar 

  160. Kishino T., Wagstaff J. 1998. Genomic organization of the UBE3A/E6-AP gene and related pseudogenes. Genomics. 47, 101–107.

    CAS  PubMed  Google Scholar 

  161. Rougeulle C., Glatt H., Lalande M. 1997. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat. Genet. 17, 14–15.

    CAS  PubMed  Google Scholar 

  162. Dindot S.V., Antalffy B.A., Bhattacharjee M.B., Beaudet A.L. 2008. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 17, 111–118.

    CAS  PubMed  Google Scholar 

  163. DuBose A.J., Johnstone K.A., Smith E.Y., Hallett R.A.E., Resnick J.L. 2010. Atp10a, a gene adjacent to the PWS/AS gene cluster, is not imprinted in mouse and is insensitive to the PWS-IC. Neurogenetics. 11, 145–151.

    CAS  PubMed  Google Scholar 

  164. Mohamad F.H., Has A.T.C. 2019. The α5-containing GABAA receptors-a. Brief summary. J. Mol. Neurosci. 67, 343–351.

    CAS  PubMed  Google Scholar 

  165. DeLorey T.M., Sahbaie P., Hashemi E., Homanics G.E., Clark J.D. 2008. Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav. Brain Res. 187, 207–220.

    CAS  PubMed  Google Scholar 

  166. Delahanty R.J., Zhang Y., Bichell T.J., Shen W., Verdier K., Macdonald R.L., Xu L., Boyd K., Williams J., Kang J.-Q. 2016. Beyond epilepsy and autism: Disruption of GABRB3 causes ocular hypopigmentation. Cell Repts. 17, 3115–3124.

    CAS  Google Scholar 

  167. Buiting K., Williams C., Horsthemke B. 2016. Angelman syndrome: Insights into a rare neurogenetic disorder. Nat. Rev. Neurol. 12, 584–593.

    CAS  PubMed  Google Scholar 

  168. Zemlyakova V.V., Ermakova M.A., Zaletaev D.V., Nemtsova M.V. 2009. Molecular diagnosis of Prader–Willi and Angelman syndromes. Med. Genet. 8, 16–20.

    CAS  Google Scholar 

  169. Bird L.M. 2014. Angelman syndrome: Review of clinical and molecular aspects. Appl. Clin. Genet. 7, 93–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Butler M.G., Miller J.L., Forster J.L. 2019. Prader–Willi syndrome: Clinical genetics, diagnosis and treatment approaches: an update. Curr. Pediatr. Rev. 15, 207–244.

    PubMed  PubMed Central  Google Scholar 

  171. Anderlid B.-M., Lundin J., Malmgren H., Lehtihet M., Nordgren A. 2014. Small mosaic deletion encompassing the snoRNAs and SNURF-SNRPN results in an atypical Prader–Willi syndrome phenotype. Am. J. Med. Genet. A. 164A, 425–431.

    PubMed  Google Scholar 

  172. de Smith A.J., Purmann C., Walters R.G., Ellis R.J., Holder S.E., Van Haelst M.M., Brady A.F., Fairbrother U.L., Dattani M., Keogh J.M., Henning E., Yeo G.S.H., O’Rahilly S., Froguel P., Farooqi I.S., Blakemore A.I.F. 2009. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum. Mol. Genet. 18, 3257–3265.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Fridman C., Koiffmann C.P. 2000. Origin of uniparental disomy 15 in patients with Prader–Willi or Angelman syndrome. Am. J. Med. Genet. 94, 249–253.

    CAS  PubMed  Google Scholar 

  174. Robinson W.P., Christian S.L., Kuchinka B.D., Peñaherrera M.S., Das S., Schuffenhauer S., Malcolm S., Schinzel A.A., Hassold T.J., Ledbetter D.H. 2000. Somatic segregation errors predominantly contribute to the gain or loss of a paternal chromosome leading to uniparental disomy for chromosome 15. Clin. Genet. 57, 349–358.

    CAS  PubMed  Google Scholar 

  175. Beygo J., Buiting K., Ramsden S.C., Ellis R., Clayton-Smith J., Kanber D. 2019. Update of the EMQN/ACGS best practice guidelines for molecular analysis of Prader–Willi and Angelman syndromes. Eur. J. Hum. Genet. 27, 1326–1340.

    PubMed  PubMed Central  Google Scholar 

  176. Beygo J., Grosser C., Kaya S., Mertel C., Buiting K., Horsthemke B. 2020. Common genetic variation in the Angelman syndrome imprinting centre affects the imprinting of chromosome 15. Eur. J. Hum. Genet. 28, 835–839.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Le Fevre A., Beygo J., Silveira C., Kamien B., Clayton-Smith J., Colley A., Buiting K., Dudding-Byth T. 2017. Atypical Angelman syndrome due to a mosaic imprinting defect: case reports and review of the literature. Am. J. Med. Genet. A. 173, 753–757.

    CAS  PubMed  Google Scholar 

  178. Ermakova M.A., Babenko O.V., Zaletaev D.V., Nemtsova M.V. 2010. Analysis of UBE3A gene mutations in patients with Angelman syndrome. Med. Genet. 9 (5), 18–23.

    CAS  Google Scholar 

  179. Eggermann T., Perez de Nanclares G., Maher E.R., Temple I.K., Tümer Z., Monk D., Mackay D.J.G., Grønskov K., Riccio A., Linglart A., Netchine I. 2015. Imprinting disorders: A group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin. Epigenetics. 7, 123.

    PubMed  PubMed Central  Google Scholar 

  180. Buiting K., Clayton-Smith J., Driscoll D.J., Gillessen-Kaesbach G., Kanber D., Schwinger E., Williams C., Horsthemke B. 2015. Clinical utility gene card for Angelman syndrome. Eur. J. Hum. Genet. 23 (2). https://doi.org/10.1038/ejhg.2014.93

  181. Beasley S.A., Kellum C.E., Orlomoski R.J., Idrizi F., Spratt D.E. 2020. An Angelman syndrome substitution in the HECT E3 ubiquitin ligase C-terminal lobe of E6AP affects protein stability and activity. PLoS One. 15, e0235925.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Aguilera C., Viñas-Jornet M., Baena N., Gabau E., Fernández C., Capdevila N., Cirkovic S., Sarajlija A., Miskovic M., Radivojevic D., Ruiz A., Guitart M. 2017. Novel intragenic deletions within the UBE3A gene in two unrelated patients with Angelman syndrome: Case report and review of the literature. BMC Med. Genet. 18, 137.

    PubMed  PubMed Central  Google Scholar 

  183. Bossuyt S.N.V., Punt A.M., de Graaf I.J., van den Burg J., Williams M.G., Heussler H., Elgersma Y., Distel B. 2021. Loss of nuclear UBE3A activity is the predominant cause of Angelman syndrome in individuals carrying UBE3A missense mutations. Hum. Mol. Genet. 30 (6), 430–442. https://doi.org/10.1093/hmg/ddab050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. McCarthy J.M., McCann-Crosby B.M., Rech M.E., Yin J., Chen C.-A., Ali M.A., Nguyen H.N., Miller J.L., Schaaf C.P. 2018. Hormonal, metabolic and skeletal phenotype of Schaaf–Yang syndrome: A comparison to Prader–Willi syndrome. J. Med. Genet. 55, 307–315.

    CAS  PubMed  Google Scholar 

  185. Negishi Y., Ieda D., Hori I., Nozaki Y., Yamagata T., Komaki H., Tohyama J., Nagasaki K., Tada H., Saitoh S. 2019. Schaaf–Yang syndrome shows a Prader–Willi syndrome-like phenotype during infancy. Orphanet. J. Rare Dis. 14, 277.

    PubMed  PubMed Central  Google Scholar 

  186. Chen X., Ma X., Zou C. 2020. Phenotypic spectrum and genetic analysis in the fatal cases of Schaaf–Yang syndrome: Two case reports and literature review. Medicine. 99, e20574.

    PubMed  PubMed Central  Google Scholar 

  187. Schaaf C.P., Gonzalez-Garay M.L., Xia F., Potocki L., Gripp K.W., Zhang B., Peters B.A., McElwain M.A., Drmanac R., Beaudet A.L., Caskey C.T., Yang Y. 2013. Truncating mutations of MAGEL2 cause Prader–Willi phenotypes and autism. Nat. Genet. 45, 1405–1408.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Carias K.V., Zoeteman M., Seewald A., Sanderson M.R., Bischof J.M., Wevrick R. 2020. A MAGEL2-deubiquitinase complex modulates the ubiquitination of circadian rhythm protein CRY1. PLoS One. 15, e0230874.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Patak J., Gilfert J., Byler M., Neerukonda V., Thiffault I., Cross L., Amudhavalli S., Pacio-Miguez M., Palomares-Bralo M., Garcia-Minaur S., Santos-Simarro F., Powis Z., Alcaraz W., Tang S., Jurgens J., et al. 2019. MAGEL2-related disorders: A study and case series. Clin. Genet. 96, 493–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Ahn H., Seo G.H., Oh A., Lee Y., Keum C., Heo S.H., Kim T., Choi J., Kim G.-H., Ko T.-S., Yum M.-S., Lee B.H., Choi I.H. 2020. Diagnosis of Schaaf–Yang syndrome in Korean children with developmental delay and hypotonia. Medicine (Baltimore). 99, e23864.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Roberts S.A., Kaiser U.B. 2020. Genetics in endocrinology: Genetic etiologies of central precocious puberty and the role of imprinted genes. Eur. J. Endocrinol. 183, R107–R117.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Seraphim C.E., Canton A.P.M., Montenegro L., Piovesan M.R., Macedo D.B., Cunha M., Guimaraes A., Ramos C.O., Benedetti A.F.F., de Castro Leal A., Gagliardi P.C., Antonini S.R., Gryngarten M., Arcari A.J., Abreu A.P., et al. 2021. Genotype–phenotype correlations in central precocious puberty caused by MKRN3 mutations. J. Clin. Endocrinol. Metab. 106, 1041–1050.

    PubMed  Google Scholar 

  193. Jong M.T.C., Gray T.A., Ji Y., Glenn C.C., Saitoh S., Driscoll D.J., Nicholls R.D. 1999. A novel imprinted gene, encoding a ring zinc-finger protein, and overlapping antisense transcript in the Prader–Willi syndrome critical region. Hum. Mol. Genet. 8, 783–793.

    CAS  PubMed  Google Scholar 

  194. Latronico A.C., Brito V.N., Carel J.-C. 2016. Causes, diagnosis, and treatment of central precocious puberty. Lancet Diabetes Endocrinol. 4, 265–274.

    PubMed  Google Scholar 

  195. Valadares L.P., Meireles C.G., De Toledo I.P., Santarem de Oliveira R., Gonçalves de Castro L.C., Abreu A.P., Carroll R.S., Latronico A.C., Kaiser U.B., Guerra E.N.S., Lofrano-Porto A. 2019. MKRN3 mutations in central precocious puberty: A systematic review and meta-analysis. J. Endocrine Soc. 3, 979–995.

    CAS  Google Scholar 

  196. Maione L., Naulé L., Kaiser U.B. 2020. Makorin RING finger protein 3 and central precocious puberty. Curr. Opin. Endocrine Metab. Res. 14, 152–159.

    Google Scholar 

  197. Fanis P., Skordis N., Toumba M., Papaioannou N., Makris A., Kyriakou A., Neocleous V., Phylactou L.A. 2019. Central precocious puberty caused by novel mutations in the promoter and 5′-UTR region of the imprinted MKRN3 gene. Front. Endocrinol. 10, 677.

    Google Scholar 

  198. Abreu A.P., Macedo D.B., Brito V.N., Kaiser U.B., Latronico A.C. 2015. A new pathway in the control of the initiation of puberty: the MKRN3 gene. J. Mol. Endocrinol. 54, R131–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Perry J., Day F., Elks C., et Collaborators. 2014. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature. 514, 92–97. https://doi.org/10.1038/nature13545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Li H., Du J., Li W., Cheng D., He W., Yi D., Xiong B., Yuan S., Tu C., Meng L., Luo A., Lin G., Lu G., Tan Y.-Q. 2018. Rare partial octosomy and hexasomy of 15q11–q13 associated with intellectual impairment and development delay: report of two cases and review of literature. Mol. Cytogenet. 11, 15.

    PubMed  PubMed Central  Google Scholar 

  201. Lu Y., Liang Y., Ning S., Deng G., Xie Y., Song J., Zuo N., Feng C., Qin Y. 2020. Rare partial trisomy and tetrasomy of 15q11–q13 associated with developmental delay and autism spectrum disorder. Mol. Cytogenet. 13, 21.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Yang L., Zhan G.D., Ding J.J., Wang H.J., Ma D., Huang G.Y., Zhou W.H. 2013. Psychiatric illness and intellectual disability in the Prader–Willi syndrome with different molecular defects – a meta analysis. PLoS One. 8 (8), e72640. https://doi.org/10.1371/journal.pone.0072640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Dykens E.M., Roof E., Hunt-Hawkins H., Dankner N., Lee E.B., Shivers C.M., Daniell C., Kim S.-J. 2017. Diagnoses and characteristics of autism spectrum disorders in children with Prader–Willi syndrome. J. Neurodev. Disord. 9, 18.

    PubMed  PubMed Central  Google Scholar 

  204. Linglart A., Maupetit-Méhouas S., Silve C. 2013. GNAS-related loss-of-function disorders and the role of imprinting. Horm. Res. Paediatr. 79, 119–129.

    CAS  PubMed  Google Scholar 

  205. Turan S., Bastepe M. 2013. The GNAS complex locus and human diseases associated with loss-of-function mutations or epimutations within this imprinted gene. Horm. Res. Paediatr. 80, 229–241.

    CAS  PubMed  Google Scholar 

  206. Lemos M.C., Thakker R.V. 2015. GNAS mutations in pseudohypoparathyroidism type 1a and related disorders. Hum. Mutat. 36, 11–19.

    CAS  PubMed  Google Scholar 

  207. Mantovani G., Elli F.M. 2019. Inactivating PTH/PTHrP signaling disorders. Front. Horm. Res. 51, 147–159.

    CAS  PubMed  Google Scholar 

  208. Turan S., Bastepe M. 2013. The GNAS complex locus and human diseases associated with loss-of-function mutations or epimutations within this imprinted gene. Horm. Res. Paediatr. 80, 229–241.

    CAS  PubMed  Google Scholar 

  209. Mantovani G., Bastepe M., Monk D., de Sanctis L., Thiele S., Usardi A., Ahmed S.F., Bufo R., Choplin T., De Filippo G., Devernois G., Eggermann T., Elli F.M., Freson K., García Ramirez A., et al. 2018. Diagnosis and management of pseudohypoparathyroidism and related disorders: First International Consensus Statement. Nat. Rev. Endocrinol. 14, 476–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Yang Y., Chu X., Nie M., Song A., Jiang Y., Li M., Xia W., Xing X., Wang O. 2020. A novel long-range deletion spanning STX16 and NPEPL1 causing imprinting defects of the GNAS locus discovered in a patient with autosomal-dominant pseudohypoparathyroidism type 1B. Endocrine. 69, 212–219.

    CAS  PubMed  Google Scholar 

  211. Kiuchi Z., Reyes M., Jüppner H. 2020. Preferential maternal transmission of STX16-GNAS mutations responsible for autosomal dominant pseudohypoparathyroidism type Ib (PHP1B): another example of transmission ratio distortion. J. Bone Miner. Res. 36(4), 696–703. https://doi.org/10.1002/jbmr.4221

    Article  CAS  PubMed  Google Scholar 

  212. Rezwan F.I., Poole R.L., Prescott T., Walker J.M., Karen Temple I., Mackay D.J. 2015. Very small deletions within the NESP55 gene in pseudohypoparathyroidism type 1b. Eur. J. Hum. Genet. 23, 494–499.

    CAS  PubMed  Google Scholar 

  213. Takatani R., Molinaro A., Grigelioniene G., Tafaj O., Watanabe T., Reyes M., Sharma A., Singhal V., Raymond F.L., Linglart A., Jüppner H. 2016. Analysis of multiple families with single individuals affected by pseudohypoparathyroidism type Ib (PHP1B) reveals only one novel maternally inherited GNAS deletion: Only one novel maternally inherited GNAS deletion among multiple PHP1B patients. J. Bone Miner. Res. 31, 796–805.

    CAS  PubMed  Google Scholar 

  214. Swieringa F., Solari F.A., Pagel O., Beck F., Huang J., Feijge M.A.H., Jurk K., Körver-Keularts I.M.L.W., Mattheij N.J.A., Faber J., Pohlenz J., Russo A., Stumpel C.T.R.M., Schrander D.E., Zieger B., et al. 2020. Impaired iloprost-induced platelet inhibition and phosphoproteome changes in patients with confirmed pseudohypoparathyroidism type Ia, linked to genetic mutations in GNAS. Sci. Rep. 10, 11389.

    PubMed  PubMed Central  Google Scholar 

  215. Jüppner H. 2021. Molecular definition of pseudohypoparathyroidism variants. J. Clin. Endocrinol. Metab. 106 (6), 1541–1552. https://doi.org/10.1210/clinem/dgab060

    Article  PubMed  PubMed Central  Google Scholar 

  216. Bastepe M. 2018. GNAS mutations and heterotopic ossification. Bone. 109, 80–85.

    CAS  PubMed  Google Scholar 

  217. Turan S., Bastepe M. 2018. GNAS complex locus. In: Encyclopedia of Signaling Molecules. Ed. Choi S. Cham: Springer, 2173–2185. doi.org/https://doi.org/10.1007/978-3-319-67199-4_101631

    Book  Google Scholar 

  218. Colson C., Decamp M., Gruchy N., Coudray N., Ballandonne C., Bracquemart C., Molin A., Mittre H., Takatani R., Jüppner H., Kottler M-L., Richard N. 2019. High frequency of paternal iso or heterodisomy at chromosome 20 associated with sporadic pseudohypoparathyroidism 1B. Bone. 123, 145–152.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Mulchandani S., Bhoj E.J., Luo M., Powell-Ha-milton N., Jenny K., Gripp K.W., Elbracht M., Eggermann T., Turner C.L.S., Temple I.K., Mackay D.J.G., Dubbs H., Stevenson D.A., Slattery L., Zackai E.H., et al. 2016. Maternal uniparental disomy of chromosome 20: a novel imprinting disorder of growth failure. Genet. Med. 18, 309–315.

    CAS  PubMed  Google Scholar 

  220. Eggermann T., Oehl-Jaschkowitz B., Dicks S., Thomas W., Kanber D., Albrecht B., Begemann M., Kurth I., Beygo J., Buiting K. 2017. The maternal uniparental disomy of chromosome 6 (upd(6)mat) “phenotype”: Result of placental trisomy 6 mosaicism? Mol. Genet. Genom. Med. 5, 668–677.

    CAS  Google Scholar 

  221. Mackay D.J.G., Boonen S.E., Clayton-Smith J., Goodship J., Hahnemann J.M.D., Kant S.G., Njølstad P.R., Robin N.H., Robinson D.O., Siebert R., Shield J.P.H., White H.E., Temple I.K. 2006. A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus. Hum. Genet. 120, 262–269.

    CAS  PubMed  Google Scholar 

  222. Boonen S.E., Pörksen S., Mackay D.J., Oestergaard E., Olsen B., Brondum-Nielsen K., Temple I.K., Hahne-mann J.M. 2008. Clinical characterisation of the multiple maternal hypomethylation syndrome in siblings. Eur. J. Hum. Genet. 16, 453–461.

    CAS  PubMed  Google Scholar 

  223. Mackay D.J.G., Callaway J.L.A., Marks S.M., White H.E., Acerini C.L., Boonen S.E., Dayanikli P., Firth H.V., Goodship J.A., Haemers A.P., Hahnemann J.M.D., Kordonouri O., Masoud A.F., Oestergaard E., Storr J., et al. 2008. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 40, 949–951.

    CAS  PubMed  Google Scholar 

  224. Quenneville S., Verde G., Corsinotti A., Kapopoulou A., Jakobsson J., Offner S., Baglivo I., Pedone P.V., Grimaldi G., Riccio A., Trono D. 2011. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell. 44, 361–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Ecco G., Imbeault M., Trono D. 2017. KRAB zinc finger proteins. Development. 144, 2719–2729.

    CAS  PubMed  Google Scholar 

  226. Farhadova S., Gomez-Velazquez M., Feil R. 2019. Stability and lability of parental methylation imprints in development and disease. Genes (Basel). 10 (12), 999. https://doi.org/10.3390/genes10120999

    Article  CAS  PubMed Central  Google Scholar 

  227. Baglivo I., Esposito S., De Cesare L., Sparago A., Anvar Z., Riso V., Cammisa M., Fattorusso R., Grimaldi G., Riccio A., Pedone P.V. 2013. Genetic and epigenetic mutations affect the DNA binding capability of human ZFP57 in transient neonatal diabetes type 1. FEBS Lett. 587, 1474–1481.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Monteagudo-Sánchez A., Hernandez Mora J.R., Simon C., Burton A., Tenorio J., Lapunzina P., Clark S., Esteller M., Kelsey G., López-Siguero J.P., de Nanclares G.P., Torres-Padilla M-E., Monk D. 2020. The role of ZFP57 and additional KRAB-zinc finger proteins in the maintenance of human imprinted methylation and multi-locus imprinting disturbances. Nucleic Acids Res. 48, 11394–11407.

    PubMed  PubMed Central  Google Scholar 

  229. Takahashi N., Coluccio A., Thorball C.W., Planet E., Shi H., Offner S., Turelli P., Imbeault M., Ferguson-Smith A.C., Trono D. 2019. ZNF445 is a primary regulator of genomic imprinting. Genes Dev. 33, 49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Kim J.D., Kim H., Ekram M.B., Yu S., Faulk C., Kim J. 2011. Rex1/Zfp42 as an epigenetic regulator for genomic imprinting. Hum. Mol. Genet. 20, 1353–1362.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Monk D., Sanchez-Delgado M., Fisher R. 2017. NLRPs, the subcortical maternal complex and genomic imprinting. Reproduction. 154, R161–170.

    CAS  PubMed  Google Scholar 

  232. Begemann M., Rezwan F.I., Beygo J., Docherty L.E., Kolarova J., Schroeder C., Buiting K., Chokkalingam K., Degenhardt F., Wakeling E.L., Kleinle S., González Fassrainer D., Oehl-Jaschkowitz B., Turner C.L.S., Patalan M., et al. 2018. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J. Med. Genet. 55, 497–504.

    CAS  PubMed  Google Scholar 

  233. Eggermann T., Kadgien G., Begemann M., Elbracht M. 2020. Biallelic PADI6 variants cause multilocus imprinting disturbances and miscarriages in the same family. Eur. J. Hum. Genet. 29 (4), 575–580. https://doi.org/10.1038/s41431-020-00762-0

    Article  CAS  PubMed  Google Scholar 

  234. Mackay D.J.G., Eggermann T., Buiting K., Garin I., Netchine I., Linglart A., de Nanclares G.P. 2015. Multilocus methylation defects in imprinting disorders. Biomol. Concepts. 6, 47–57.

    CAS  PubMed  Google Scholar 

  235. Nakka P., Pattillo Smith S., O’Donnell-Luria A.H., McManus K.F., Mountain J.L., Ramachandran S., Sathirapongsasuti J.F., Agee M., Auton A., Bell R.K., Bryc K., Elson S.L., Fontanillas P., Furlotte N.A., Hicks B., et al. 2019. Characterization of prevalence and health consequences of uniparental disomy in four million individuals from the general population. Am. J. Hum. Genet. 105, 921–932.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Yauy K., de Leeuw N., Yntema H.G., Pfundt R., Gilissen C. 2020. Accurate detection of clinically relevant uniparental disomy from exome sequencing data. Genet. Med. 22, 803–808.

    CAS  PubMed  Google Scholar 

  237. Scuffins J., Keller-Ramey J., Dyer L., Douglas G., Torene R., Gainullin V., Juusola J., Meck J., Retterer K. 2021. Uniparental disomy in a population of 32 067 clinical exome trios. Genet Med. 23 (6), 1101–1107. https://doi.org/10.1038/s41436-020-01092-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Gigante S., Gouil Q., Lucattini A., Keniry A., Beck T., Tinning M., Gordon L., Woodruff C., Speed T.P., Blewitt M.E., Ritchie M.E. 2019. Using long-read sequencing to detect imprinted DNA methylation. Nucleic Acids Res. 47, e46–e46.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Klobučar T., Kreibich E., Krueger F., Arez M., Pólvora-Brandão D., von Meyenn F., da Rocha S.T., Eckersley-Maslin M. 2020. IMPLICON: An ultra-deep sequencing method to uncover DNA methylation at imprinted regions. Nucleic Acids Res. 48, e92–e92.

    PubMed  PubMed Central  Google Scholar 

  240. Santoni F.A., Stamoulis G., Garieri M., Falconnet E., Ribaux P., Borel C., Antonarakis S.E. 2017. Detection of imprinted genes by single-cell allele-specific gene expression. Am. J. Hum. Genet. 100, 444–453.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.V. Bure for assistance in preparation of this paper.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-14-50138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Zaletaev.

Ethics declarations

Сonflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Novikova

Abbreviations: lncRNA, Long Non-Coding RNA; UPD, Uniparental Disomy; AS-IC, Angelman Syndrome Imprinting Center; BP, Break Point; DMR, Differentially Methylated Regions; GOM, Gain of Methylation; IC, Imprinting Centre; LOM, Loss of Methylation; MLID, Multi-Locus Imprinting Disturbances; PWS-IC, Prader-Willi Syndrome Imprinting Center; snoRNA, small nucleolar RNA; miRNA, microRNA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaletaev, D.V., Nemtsova, M.V. & Strelnikov, V.V. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Mol Biol 56, 1–28 (2022). https://doi.org/10.1134/S0026893321050149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321050149

Keywords:

Navigation