Skip to main content
Log in

Risk of Multiple Sclerosis: Analysis of Interactions between Variants of Nuclear and Mitochondrial Genomes

  • GENOMICS. TRANSCRYPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

There is increasing evidence that the interaction of the mitochondrial and nuclear genomes substantially affects the risk of neurodegenerative diseases. The role of mitonuclear interactions in the development of multiple sclerosis, a severe chronic neurodegenerative disease of a polygenic nature, is poorly understood. In this work, we analyzed the association of multiple sclerosis with two-component mitonuclear combinations that include each of seven polymorphic variants of the nuclear genome localized in the region of the UCP2, and KIF1B genes and in the PVT1 locus (MYC, PVT1, and MIR1208 genes) and each of ten polymorphisms of the mitochondrial genome, as well as individual genetic variants that make up these combinations. Association of the individual components of these combinations with multiple sclerosis was also evaluated. 507 patients with multiple sclerosis and 321 healthy individuals were enrolled in the study, all participants were ethnic Russians. Two mitonuclear combinations associated with multiple sclerosis were identified: the UCP2 (rs660339) *A + MT-ATP6 (rs193303045) *G combination was characterized by p-value = 0.015 and OR = 1.39 [95% CI 1.05-1.87], and the PVT1 (rs2114358) *G + MT-ND1 (rs1599988) *C combination – by p-value = 0.012 and OR = 1.77 [95% CI 1.10-2.84]. Only one of the individual components of these combinations, allele rs660339 *A of the nuclear gene UCP2 encoding uncoupling protein 2 of the mitochondrial anion carrier family, was independently associated with multiple sclerosis (p = 0.028; OR = 1.36 [95% CI 1.01–1.84]). This study expands the current understanding of the role of mitonuclear interactions and variance of nuclear genes, whose products function in mitochondria, and in risk of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Karussis D. 2014. The diagnosis of multiple sclerosis and the various related demyelinating syndromes: A critical review. J. Autoimmun. 48–49, 134–142.

    Article  Google Scholar 

  2. Baranzini S.E., Oksenberg J.R. 2017. The genetics of multiple sclerosis: From 0 to 200 in 50 years. Trends Genet. 33 (12), 960–970.

    Article  CAS  Google Scholar 

  3. International Multiple Sclerosis Genetics Consortium. 2019. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 365 (6460), eaav7188.

  4. Tranah G.J., Santaniello A., Caillier S.J., D’Alfonso S., Boneschi F.M., Hauser S.L., Oksenberg J.R. 2015. Mitochondrial DNA sequence variation in multiple sclerosis. Neurology. 85 (4), 325–330.

    Article  CAS  Google Scholar 

  5. Hudson G., Gomez-Duran A., Wilson I.J., Chinnery P.F. 2014. Recent mitochondrial DNA mutations increase the risk of developing common late-onset human diseases. PLoS Genet. 10 (5), e1004369.

    Article  Google Scholar 

  6. Maher B. 2008. Personal genomes: The case of the missing heritability. Nature. 456 (7218), 18–21.

    Article  CAS  Google Scholar 

  7. Morrow E.H., Camus M.F. 2017. Mitonuclear epistasis and mitochondrial disease. Mitochondrion. 35, 119–122.

    Article  CAS  Google Scholar 

  8. Andrews S.J., Fulton-Howard B., Patterson C., McFall G.P., Gross A., Michaelis E.K., Goate A., Swerdlow R.H., Pa J., Alzheimer’s disease neuroimaging initiative. 2020. Mitonuclear interactions influence Alzheimer’s disease risk. Neurobiol. Aging. 87, 138.e7–138.e14.

    Article  CAS  Google Scholar 

  9. Schulmann A., Ryu E., Goncalves V., Rollins B., Christiansen M., Frye M.A., Biernacka J., Vawter M.P. 2019. Novel complex interactions between mitochondrial and nuclear DNA in schizophrenia and bipolar disorder. Mol. Neuropsychiatry. 5 (1), 13–27.

    Article  CAS  Google Scholar 

  10. Campbell G., Mahad D.J. 2018. Mitochondrial dysfunction and axon degeneration in progressive multiple sclerosis. FEBS Lett. 592 (7), 1113–1121.

    Article  CAS  Google Scholar 

  11. Kozin M.S., Kulakova O.G., Favorova O.O. 2018. Involvement of mitochondria in neurodegeneration in multiple sclerosis. Biochemistry (Moscow). 83 (7), 813–830.

    CAS  PubMed  Google Scholar 

  12. Kozin M., Kulakova O., Kiselev I., Baulina N., Boyko A., Favorova O. 2020. Mitonuclear interactions influence multiple sclerosis risk. Gene. 758, 144962.

    Article  CAS  Google Scholar 

  13. Pareyson D., Saveri P., Sagnelli A., Piscosquito G. 2015. Mitochondrial dynamics and inherited peripheral nerve diseases. Neurosci. Lett. 596, 66–77.

    Article  CAS  Google Scholar 

  14. Hass D.T., Barnstable C.J. 2021. Uncoupling proteins in the mitochondrial defense against oxidative stress. Prog. Retin. Eye. Res. 8, 100941.

    Article  Google Scholar 

  15. Polman C.H., Reingold S.C., Banwell B., Clanet M., Cohen J.A., Filippi M., Fujihara K., Havrdova E., Hutchinson M., Kappos L., Lublin F.D., Montalban X., O’Connor P., Sandberg-Wollheim M., et al. 2011. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69 (2), 292–302.

    Article  Google Scholar 

  16. Kiselev I., Bashinskaya V., Baulina N., Kozin M., Popova E., Boyko A., Favorova O., Kulakova O. 2019. Genetic differences between primary progressive and relapsing-remitting multiple sclerosis: The impact of immune-related genes variability. Mult. Scler. Relat. Disord. 29, 130–136.

    Article  Google Scholar 

  17. Barrett J.C., Fry B., Maller J., Daly M.J. 2005. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics. 21 (2), 263–265.

    Article  CAS  Google Scholar 

  18. Favorov A.V., Andreewski T.V., Sudomoina M.A., Favorova O.O., Parmigiani G., Ochs M.F. 2005. A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans. Genetics. 171, 2113–2121.

    Article  CAS  Google Scholar 

  19. Barsova R.M., Lvovs D., Titov B.V., Matveeva N.A., Shakhnovich R.M., Sukhinina T.S., Kukava N.G., Ruda M.Y., Karamova I.M., Nasibullin T.R., Mustafina O.E., Osmak G.J., Tsareva E.Y., Kulakova O.G., Favorov A.V., Favorova O.O. 2015. Variants of the coagulation and inflammation genes are replicably associated with myocardial infarction and epistatically interact in Russians. PLoS One. 10, 1–16.

    Article  Google Scholar 

  20. White D.R., Pesner R., Reitz K.P. 1983. An exact significance test for three-way interaction effects. Cross-Cultural Res. 18, 103–122.

    Google Scholar 

  21. Cortina-Borja M., Smith A.D., Combarros O., Lehmann D.J. 2009. The synergy factor: A statistic to measure interactions in complex diseases. BMC Res. Notes. 2, 1–7.

    Article  Google Scholar 

  22. Huppi K., Pitt J.J., Wahlberg B.M., Caplen N.J. 2012. The 8q24 gene desert: An oasis of non-coding transcriptional activity. Front. Genet. 3, 1–11.

    Article  Google Scholar 

  23. Stine Z.E., Walton Z.E., Altman B.J., Hsieh A.L., Dang C.V. 2015. MYC, metabolism, and cancer. Cancer Discov. 5 (10), 1024–1039.

    Article  CAS  Google Scholar 

  24. Cho S.W., Xu J., Sun R., Mumbach M.R., Carter A.C., Chen Y.G., Yost K.E., Kim J., He J., Nevins S.A., Chin S.F., Caldas C., Liu S.J., Horlbeck M.A., Lim D.A., et al. 2018. Promoter of lncRNA gene PVT1 is a tumor suppressor DNA boundary element. Cell. 173 (6), 1398–1412. e22.

    Article  CAS  Google Scholar 

  25. Guo Z., Wang Y., Zhao Y., Guo Z., Wang Y., Zhao Y., Jin Y., An L., Xu H., Liu Z., Chen X., Zhou H., Wang H., Zhang W. 2019. A functional 5'-UTR polymorphism of MYC contributes to nasopharyngeal carcinoma susceptibility and chemoradiotherapy induced toxicities. J. Cancer. 10 (1), 147–155.

    Article  CAS  Google Scholar 

  26. Martin-Guerrero I., Gutierrez-Camino A., Lopez-Lopez E., Bilbao-Aldaiturriaga N., Pombar-Gomez M., Ardanaz M., Garcia-Orad A. 2015. Genetic variants in miRNA processing genes and pre-miRNAs are associated with the risk of chronic lymphocytic leukemia. PLoS One. 10 (3), e0118905.

    Article  Google Scholar 

  27. Alessio E., Buson L., Chemello F., Peggion C., Grespi F., Martini P., Massimino M.L., Pacchioni B., Millino C., Romualdi C., Bertoli A., Scorrano L., Lanfranchi G., Cagnin S. 2019. Single cell analysis reveals the involvement of the long non-coding RNA Pvt1 in the modulation of muscle atrophy and mitochondrial network. Nucleic Acids Res. 47 (4), 1653–1670.

    Article  CAS  Google Scholar 

  28. Otaegui D., Saenz A., Ruiz-Martinez J., Olaskoaga J., López de Munain A. 2007. UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor. Mult. Scler. 13 (4), 454–458.

    Article  CAS  Google Scholar 

  29. Aulchenko Y.S., Hoppenbrouwers I.A., Ramagopalan S.V., Broer L., Jafari N., Hillert J., Link J., Lundström W., Greiner E., Sadovnick A.D., Goossens D., Van Broeckhoven C., Del-Favero J., Ebers G.C., Oostra B.A., et al. 2008. Genetic variation in the KIF1B locus influences susceptibility to multiple sclerosis. Nat. Genet. 40 (12), 1402–1403.

    Article  CAS  Google Scholar 

  30. International Multiple Sclerosis Genetics Consortium (IMSGC). 2010. Lack of support for association between the KIF1B rs10492972[C] variant and multiple sclerosis. Nat. Genet. 42 (6), 469–470.

    Article  Google Scholar 

  31. Arbuzova E.E., Selyanina N.V., Karakulova Yu.V. 2019. Association of gene KIF1B single-nucleotide polymorphisms with the severity of clinical manifestations of multiple sclerosis. Zh. Nevrol. Psikhiatr. im. S.S. Korsakova. 119 (10–2), 58–62.

Download references

Funding

This work was carried out within the State Assignment AAAA-A19-119042590026-5 and with the financial support of the Russian Foundation for Basic Research within scientific project no. 19-315-51003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kozin.

Ethics declarations

Conflict of interests. The authors declare that there is no conflicts of interest.

All procedures used in this paper are in accordance with the ethical standards of the institutional committee on research ethics and the 1964 Declaration of Helsinki and its subsequent amendments or comparable standards of ethics. Written informed consent was obtained from all participants to participate in the experiments.

Additional information

Abbreviations: CI, confidence interval; lncRNA, long noncoding RNA; PCR, polymerase chain reaction; PCR-RFLP, PCR with subsequent analysis of restriction fragment length polymorphism; OR, odds ratio; MS, multiple sclerosis; CNS, central nervous system; ETC, mitochondrial electron transport chain; GWAS, Genome Wide Association Study; LD, linkage disequilibrium; SNP, single nucleotide polymorphism; SF, synergy factor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozin, M.S., Kiselev, I.S., Baulina, N.M. et al. Risk of Multiple Sclerosis: Analysis of Interactions between Variants of Nuclear and Mitochondrial Genomes. Mol Biol 55, 839–846 (2021). https://doi.org/10.1134/S0026893321050071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321050071

Keywords:

Navigation