Skip to main content
Log in

SPINK3: A novel growth factor that promotes rat liver regeneration

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Serine peptidase inhibitor, Kazal type 3 (SPINK3) is a trypsin inhibitor, and also a growth factor that has an identical structure to epidermal growth factor (EGF), which could combine with epidermal growth factor receptor (EGFR) to promote cell proliferation. To shed light on the role and regulation mechanism of SPINK3 in rat liver regeneration (LR), Rat Genome 230 2.0 assay was used to detect the expression profiles of LR genes after partial hepatectomy (PH). The results showed that Spink3 was significantly up-regulated at 2–24 h and 72–168 h after PH. In the present study, RT-PCR and immunoblotting were used to validate the assay results. Ingenuity Pathway Analysis 9.0 (IPA) software was used to build the SPINK3 signaling regulating LR and analyze the possible mechanism. And then the expression of cell proliferation-associated gene Ccna2 was examined by RT-PCR in normal rat liver cell line BRL-3A in which Spink3 was overexpressed. The results showed that Ccna2 was significantly up-regulated in BRL-3A in which Spink3 was over-expressed. SPINK3 combining with EGFR accelerated cell proliferation during rat liver regeneration via P38, PKC, JAK-STAT and AKT pathways. Thus, SPINK3 was likely to promote hepatocytes proliferation in LR through P38, PKC, JAK-STAT and AKT pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCG:

blank control group

EG:

experimental group

LR:

liver regeneration

NC:

normal control

NCG:

negative control group

PH:

partial hepatectomy

SO:

sham-operated (rats)

References

  1. Fausto N., Laird A.D., Webber E.M. 1995. Liver regeneration: 2. Role of growth factors and cytokines in hepatic regeneration. FASEB J. 9, 1527–1536.

    CAS  PubMed  Google Scholar 

  2. Higgins G.M., Anderson R.M. 1931. Experimental pathology of the liver: Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 12, 186–202.

    Google Scholar 

  3. Ohmuraya M., Yamamura K. 2011. The roles of serine protease inhibitor Kazal type 1 (SPINK1) in pancreatic diseases. Exp. Anim. 60, 433–444.

    Article  CAS  PubMed  Google Scholar 

  4. Lu X., Lamontagne J., Lu F., Block T.M. 2008. Tumorassociated protein SPIK/TATI suppresses serine protease dependent cell apoptosis. Apoptosis. 13, 483–494.

    Article  CAS  PubMed  Google Scholar 

  5. Marchbank T., Weaver G., Nilsen-Hamilton M., Playford R.J. 2009. Pancreatic secretory trypsin inhibitor is a major motogenic and protective factor in human breast milk. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G697–G703.

    Article  CAS  PubMed  Google Scholar 

  6. Fukuda M., Fujiyama Y., Sasaki M., Andoh A., Bamba T., Fushiki T. 1998. Monitor peptide (rat pancreatic secretory trypsin inhibitor) directly stimulates the proliferation of the nontransformed intestinal epithelial cell line, IEC-6. Digestion. 59, 326–330.

    Article  CAS  PubMed  Google Scholar 

  7. Ozaki N., Ohmuraya M., Hirota M., Ida S., Wang J., Takamori H., Higashiyama S., Baba H., Yamamura K. 2009. Serine protease inhibitor Kazal type 1 promotes proliferation of pancreatic cancer cells through the epidermal growth factor receptor. Mol. Cancer Res. 7, 1572–1581.

    Article  CAS  PubMed  Google Scholar 

  8. Ida S., Ohmuraya M., Hirota M., Ozaki N., Hiramatsu S., Uehara H., Takamori H., Araki K., Baba H., Yamamura K. 2010. Chronic pancreatitis in mice by treatment with choline-deficient ethionine-supplemented diet. Exp. Anim. 59, 421–429.

    Article  CAS  PubMed  Google Scholar 

  9. Xu C.S., Chang C.F. 2008. Expression profiles of the genes associated with metabolism and transport of amino acids and their derivatives in rat liver regeneration. Amino Acids. 34, 91–102.

    Article  CAS  PubMed  Google Scholar 

  10. Wang G.P., Xu C.S. 2010. Reference gene selection for real-time RT-PCR in eight kinds of rat regenerating hepatic cells. Mol. Biotechnol. 46, 49–57.

    Article  PubMed  Google Scholar 

  11. Xu C.S., Chen X.G., Chang C.F., Wang G.P., Wang W.B., Zhang L.X., Zhu Q.S., Wang L., Zhang F.C. 2010. Transcriptome analysis of hepatocytes after partial hepatectomy in rats. Dev. Genes Evol. 220, 263–274.

    Article  CAS  PubMed  Google Scholar 

  12. Mulrane L., RexhEpaj E., Smart V., Callanan J.J., Orhan D., Eldem T., Mally A., Schroeder S., Meyer K., Wendt M., O’ Shea D., Gallagher W.M. 2008. Creation of a digital slide and tissue microarray resource from a multi-institutional predictive toxicology study in the rat: An initial report from the PredTox group. Exp. Toxicol. Pathol. 60, 235–245.

    Article  PubMed  Google Scholar 

  13. Neuhoff V. 2000. Microelectrophoresis and auxiliary micromethods. Electrophoresis. 21, 3–11.

    Article  CAS  PubMed  Google Scholar 

  14. Kountouras J., Boura P., Lygidakis N.J. 2001. Liver regeneration after hepatectomy. Hepatogastroenterology. 48, 556–562.

    CAS  PubMed  Google Scholar 

  15. Jin J., Hong I.H., Lewis K., Iakova P., Breaux M., Jiang Y., Sullivan E., Jawanmardi N., Timchenko L., Timchenko N.A. 2015. Cooperation of C/EBP family proteins and chromatin remodeling proteins is essential for termination of liver regeneration. Hepatology. 61, 15–25.

    Article  Google Scholar 

  16. Xu C.S., Zhang J.B. 2009. Research on the Functional Genomics of the Rat Regenerating Liver. Beijing, China: Higher Education Press.

    Google Scholar 

  17. Wang J., Ohmuraya M., Hirota M., Baba H., Zhao G., Takeya M., Araki K., Yamamura K. 2008. Expression pattern of serine protease inhibitor kazal type 3 (Spink3) during mouse embryonic development. Histochem. Cell Biol. 130, 387–397.

    Article  CAS  PubMed  Google Scholar 

  18. Ozaki N., Fukuchi Y., Tomiyoshi S.R., Uehara H., Ida S., Wang J., Araki K., Sibilia M., Baba H., Yamamura K., Ohmuraya M. 2014. Autophagy regulation in pancreatic acinar cells is independent of epidermal growth factor receptor signaling. Biochem. Biophys. Res. Commun. 446, 224–230.

    Article  CAS  PubMed  Google Scholar 

  19. Chen Z., Liu F., Zhang N., Cao D., Liu M., Tan Y., Jiang Y. 2013. p38ß, a novel regulatory target of pokemon in hepatic cells. Int. J. Mol. Sci. 14, 13511–13524.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Buck I., Morceau F., Cristofanon S., Heintz C., Chateauvieux S., Reuter S., Dicato M., Diederich M. 2008. Tumor necrosis factor alpha inhibits erythroid differentiation in human erythropoietin-dependent cells involving p38 MAPK pathway, GATA-1 and FOG-1 downregulation and GATA-2 upregulation. Biochem. Pharmacol. 76, 1229–1239.

    Article  CAS  PubMed  Google Scholar 

  21. Ferguson B.W., Datta S. 2011. Role of heparan sulfate 2-O-sulfotransferase in prostate cancer cell proliferation, invasion, and growth factor signaling. Prostate Cancer. 2011, 893208.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Delker D.A., Yano B.L., Gollapudi B.B. 2000. Evaluation of cytotoxicity, cell proliferation, and genotoxicity induced by p-cresidine in hetero- and nullizygous transgenic p53 mice. Toxicol. Sci. 55, 361–369.

    Article  CAS  PubMed  Google Scholar 

  23. Gutsch R., Kandemir J.D., Pietsch D., Cappello C., Meyer J., Simanowski K., Huber R., Brand K. 2011. CCAAT/enhancer-binding protein beta inhibits proliferation in monocytic cells by affecting the retinoblastoma protein/E2F/cyclin E pathway but is not directly required for macrophage morphology. J. Biol. Chem. 286, 22716–22729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dittmar T., Husemann A., Schewe Y., Nofer J.R., Niggemann B., Zänker K.S., Brandt B.H. 2002. Induction of cancer cell migration by epidermal growth factor is initiated by specific phosphorylation of tyrosine 1248 of c-erbB-2 receptor via EGFR. FASEB J. 16, 1823–1825.

    CAS  PubMed  Google Scholar 

  25. Srikanth S., Wang Z., Tu H., Nair S., Mathew M.K., Hasan G., Bezprozvanny I. 2004. Functional properties of the Drosophila melanogaster inositol 1,4,5-trisphosphate receptor mutants. Biophys. J. 86, 3634–3646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu C.S., Zhao W.M., Wang S., Wang W.B., Yang Y.J. 2011. Comparative analysis of the role of ERK1/2 signaling pathway in regulating cell proliferation of rat liver regeneration and rat acute hepatic failure. J. Mol. Biol. Res. 1, 55–65.

    Article  Google Scholar 

  27. Nilsson M., Dahlman-Wright K., Karelmo C., Ebeling M., Gustafsson J.A., Steffensen K.R. 2007. Elk1 and SRF transcription factors convey basal transcription and mediate glucose response via their binding sites in the human LXRB gene promoter. Nucleic Acids Res. 35, 4858–4868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rieder G., Tessier A.J., Qiao X.T., Madison B., Gumucio D.L., Merchant J.L. 2005. Helicobacter-induced intestinal metaplasia in the stomach correlates with Elk-1 and serum response factor induction of villin. J. Biol. Chem. 280, 4906–4912.

    Article  CAS  PubMed  Google Scholar 

  29. Xiang Z., Qu F., Qi L., Zhang Y., Xiao S., Yu Z. 2014. A novel ortholog of serum response factor (SRF) with immune defense function identified in Crassostrea hongkongensis. Fish Shellfish Immunol. 36, 75–82.

    Article  CAS  PubMed  Google Scholar 

  30. You J., Zhang Y., Li Z., Lou Z., Jin L., Lin X. 2014. Drosophila perlecan regulates intestinal stem cell activity via cell-matrix attachment. Stem Cell Rep. 2, 761–769.

    Article  CAS  Google Scholar 

  31. Catania A., Iavarone C., Carlomagno S.M., Chiariello M. 2006. Selective transcription and cellular proliferation induced by PDGF require histone deacetylase activity. Biochem. Biophys. Res. Commun. 343, 544–554.

    Article  CAS  PubMed  Google Scholar 

  32. Levy D.E., Lee C.K. 2002. What does Stat3 do? J. Clin. Invest. 109, 1143–1148.

    Article  CAS  Google Scholar 

  33. Zhou S., Liu L., Li H., Eilers G., Kuang Y., Shi S., Yan Z., Li X., Corson J.M., Meng F., Zhou H., Sheng Q., Fletcher J.A., Ou W.B. 2014. Multipoint targeting of the PI3K/mTOR pathway in mesothelioma. Br. J. Cancer. 110, 2479–2488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Misra U.K., Pizzo S.V. 2004. Activation of Akt/PDK signaling in macrophages upon binding of receptorrecognized forms of alpha2-macroglobulin to its cellular receptor: Effect of silencing the CREB gene. J. Cell. Biochem. 93, 1020–1032.

    Article  CAS  PubMed  Google Scholar 

  35. Gu T., Zhang Z., Wang J., Guo J., Shen W.H., Yin Y. 2011. CREB is a novel nuclear target of PTEN phosphatase. Cancer Res. 71, 2821–2825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Xu.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 3, pp. 457–465.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C.F., Yang, J., Li, X.F. et al. SPINK3: A novel growth factor that promotes rat liver regeneration. Mol Biol 50, 398–404 (2016). https://doi.org/10.1134/S0026893316030055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316030055

Keywords

Navigation