Skip to main content
Log in

DAX1, an unusual member of the nuclear receptor superfamily with diverse functions

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Nuclear receptors (NRs) act as ligand-activated transcription factors and play an important role in regulating metabolism, homeostasis, differentiation, development, and pathogenesis of various diseases. Once activated by a ligand, a NR binds to a specific nucleotide sequence in a target gene to activate its expression. Natural ligands are known for the majority of NRs. DAX1 is an unusual member of the NR superfamily, lacking a ligand and a typical DNA-binding domain. DAX1 was found to play an important role in regulating the development of the adrenals and gonads as early as 20 years ago, but the molecular mechanisms of its effect were unclear. DAX1 is capable of interacting with many members of the NR superfamily and with various transcriptional corepressors and coactivators, and its functions are not restricted to regulating the adrenal and gonadal development and contributing to steroidogenesis. Recent studies elucidated the role DAX1 plays in the pathogenesis of X-linked adrenal hypoplasia and dosage-sensitive sex reversal. DAX1 is an important component of the transcription factor network that maintains the pluripotent state of mouse embryonic stem cells. Modern data on the properties, functions, and mechanisms of action of DAX1 are considered in the review. Specifics of the DAX1 interactions with various protein partners are characterized. Examples are provided to illustrate the corepressor and coactivator effects of DAX1 on target gene transcription. In addition, the review discusses the role DAX1 plays in the pathogenesis of hereditary disorders, a possible association of DAX1 with endocrine oncology diseases, and the contribution of DAX1 to self-renewal of mouse embryonic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AR:

androgen receptor

DBD:

DNA-binding domain

EGF:

epidermal growth factor

ER:

estrogen receptor

ERRγ:

estrogen-related receptor γ

EWS:

Ewing sarcoma gene

FXR:

farnesoid X receptor

GR:

glucocorticoid receptor

GRIP1:

glucocorticoid receptor-interacting protein 1

HNF4α:

hepatocyte nuclear factor 4α

LBD:

ligand-binding domain

LEF:

lymphoid enhancer-binding factor

LRH1:

liver receptor homolog 1

LXRα:

liver X receptor α

MC2R:

melanocortin receptor 2

MAPK:

mitogen-activated protein kinase

NF-κB:

nuclear factor κB

NR:

nuclear receptor

Nur77 (NR4A2):

nerve growth factor IB receptor

N-CoR:

nuclear receptor corepressor 1

PPARγ:

peroxisome proliferator-activated receptor γ

PGC-1:

PPAR coactivator 1

PR:

progesterone receptor

RAC-3:

ras-related C3 botulinum toxin substrate 3

RNF31:

ring finger protein 31

SF1:

steroidogenic factor 1

SMRT:

silencing mediator of retinoic acid and thyroid hormone receptor

SOX9:

SRY-related HMG-box protein 9

SRA:

steroid receptor RNA activator

SRC-1:

steroid receptor coactivator 1

SREBP1c:

sterol regulatory element-binding protein 1

SRY:

sex-determining region Y

StAR:

steroidogenic acute regulatory protein

TIF-2:

transcription intermediary factor 2

TCF:

T-cell factor

Wnt4:

Wingless-Int signaling pathway gene 4

References

  1. Evans R.M. 1988. The steroid and thyroid hormone receptor superfamily. Science. 240, 889–895.

    Article  CAS  PubMed  Google Scholar 

  2. McKenna N.J., O’Malley B.W. 2002. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell. 108, 465–474.

    Article  CAS  PubMed  Google Scholar 

  3. Lalli E., Sassone-Corsi P. 2003. DAX-1, an unusual orphan receptor at the crossroads of steroidogenic function and sexual differentiation. Mol. Endocrinol. 17, 1445–1453.

    Article  CAS  PubMed  Google Scholar 

  4. Niakan K.K., McCabe E.R. 2005. DAX1 origin, function and novel role. Mol. Genet. Metab. 86, 70–83.

    Article  CAS  PubMed  Google Scholar 

  5. Guo W., Burris T.P., Zhang Y.-H., Huang B.-L., Mason J., Copeland K.C., Kupfer S.R., Pagon R.A., McCabe E.R.B. 1996. Genomic sequence of the DAXI gene: An orphan nuclear receptor responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 81, 2481–2486.

    CAS  PubMed  Google Scholar 

  6. Burris T.P., Guo W., Le T., McCabe E.R. 1995. Identification of a putative steroidogenic factor-1 response element in the DAX-1 promoter. Biochem. Biophys. Res. Commun. 214, 576–581.

    Article  CAS  PubMed  Google Scholar 

  7. Martins R.S., Power D.M., Fuentes J., Deloffre L.A., Canário A.V. 2013. DAX1 regulatory networks unveil conserved and potentially new functions. Gene. 530, 66–74.

    Article  CAS  PubMed  Google Scholar 

  8. Hanley N.A., Rainey W.E., Wilson D.I., Ball, S.G., Parker K.L. 2001. Expression profiles of SF-1, DAX1, and CYP17 in the human fetal adrenal gland: Potential interactions in gene regulation. Mol. Endocrinol. 15, 57–68.

    Article  CAS  PubMed  Google Scholar 

  9. Kawajiri K., Ikuta T., Suzuki T., Kusaka M., Muramatsu M., Fujieda K., Tachibana M., Morohashi K. 2003. Role of the LXXLL-motif and activation function 2 domain in subcellular localization of Dax-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1). Mol. Endocrinol. 17, 994–1004.

    Article  CAS  PubMed  Google Scholar 

  10. Park S.Y., Meeks J.J., Raverot G., Pfaff L.E., Weiss J., Hammer G.D., Jameson J.L. 2005. Nuclear receptors Sf1 and Dax1 function cooperatively to mediate somatic cell differentiation during testis development. Development. 132, 2415–2423.

    Article  CAS  PubMed  Google Scholar 

  11. Nachtigal M.W., Hirokawa Y., Enyeart-VanHouten D.L., Flanagan J.N., Hammer G.D., Ingraham H.A. 1998. Wilms’ tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell. 93, 445–454.

    Article  CAS  PubMed  Google Scholar 

  12. Hanley N.A., Hagan D.M., Clement-Jones M., Ball S.G., Strachan T., Salas-Cortés L., McElreavey K., Lindsay S., Robson S., Bullen P., Ostrer H., Wilson D.I. 2000. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech. Dev. 91, 403–407.

    Article  CAS  PubMed  Google Scholar 

  13. Hoyle C., Narvaez V., Alldus G., Lovell-Badge R., Swain A. 2002. Dax1 expression is dependent on steroidogenic factor 1 in the developing gonad. Mol. Endocrinol. 16, 747–756.

    Article  CAS  PubMed  Google Scholar 

  14. Guo W., Burris T.P., McCabe E.R.B. 1995. Expression of DAX-1, the gene responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism, in the hypothalamic-pituitary-adrenal/gonadal axis. Biochem. Mol. Med. 56, 8–13.

    Article  CAS  PubMed  Google Scholar 

  15. Ito M., Yu R., Jameson J.L. 1997. DAX-1 inhibits SF-1-mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita. Mol. Cell. Biol. 17, 1476–1483.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Germain P., Staels B., Dacquet C., Spedding M., Laudet V. 2006. Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58, 685–704.

    Article  CAS  PubMed  Google Scholar 

  17. Iyer A.K., McCabe E.R. 2004. Molecular mechanisms of DAX1 action. Mol. Genet. Metab. 83, 60–73.

    Article  CAS  PubMed  Google Scholar 

  18. Ehrlund A., Treuter E. 2012. Ligand-independent actions of the orphan receptors/corepressors DAX-1 and SHP in metabolism, reproduction and disease. J. Steroid Biochem. Mol. Biol. 130, 169–179.

    Article  CAS  PubMed  Google Scholar 

  19. Lehmann S.G., Lalli E., Sassone-Corsi P. 2002. X-linked adrenal hypoplasia congenital is caused by abnormal nuclear localization of the DAX1 protein. Proc. Natl. Acad. Sci. U. S. A. 99, 8225–8230.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lehmann S.G., Wurtz J.M., Renaud J.P., Sassone-Corsi P., Lalli E. 2003. Structure-function analysis reveals the molecular determinants of the impaired biological function of DAX-1 mutants in AHC patients. Hum. Mol. Genet. 12, 1063–1072.

    Article  CAS  PubMed  Google Scholar 

  21. Lalli E., Bardoni B., Zazopoulos E., Wurtz J.-M., Strom T.M., Moras D., Sassone-Corsi P. 1997. A transcriptional silencing domain in DAX-1 whose mutation causes adrenal hypoplasia congenita. Mol. Endocrinol. 11, 1950–1960.

    Article  CAS  PubMed  Google Scholar 

  22. Giguere V. 1999. Orphan nuclear receptors: From gene to function. Endocr. Rev. 20, 689–725.

    CAS  PubMed  Google Scholar 

  23. Sablin E.P., Woods A., Krylova I.N., Hwang P., Ingraham H.A., Fletterick R.J. 2008. The structure of corepressor Dax-1 bound to its target nuclear receptor LRH-1. Proc. Natl. Acad. Sci. U. S. A. 105, 18390–18395.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zazopoulos E., Lalli E., Stocco D.M., Sassone-Corsi P. 1997. DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis. Nature. 390, 311–315.

    Article  CAS  PubMed  Google Scholar 

  25. Lalli E., Ohe K., Hindelang C., Sassone-Corsi P. 2000. Orphan receptor DAX-1 is a shuttling RNA binding protein associated with polyribosomes via mRNA. Mol. Cell. Biol. 20, 4910–4921.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ho J., Zhang Y.H., Huang B.L., McCabe E.R. 2004. NR0B1A: An alternatively spliced form of NR0B1. Mol. Genet. Metab. 83, 330–336.

    Article  CAS  PubMed  Google Scholar 

  27. Hossain A., Li C., Saunders G.F. 2004. Generation of two distinct functional isoforms of dosage-sensitive sex reversal-adrenal hypoplasia congenita-critical region on the X chromosome gene 1 (DAX-1) by alternative splicing. Mol. Endocrinol. 18, 1428–1437.

    Article  CAS  PubMed  Google Scholar 

  28. Muscatelli F., Strom T.M., Walker A.P., Zanaria E., Recan D., Meindl A., Bardoni B., Guioli S., Zehetner G., Rabl W., Schwarz H.P., Kaplan J.-C., Camerino G., Meitinger T., Monaco A.P. 1994. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature. 372, 672–676.

    Article  CAS  PubMed  Google Scholar 

  29. Zanaria E., Muscatelli F., Bardoni B., Strom T.M., Guioli S., Guo W., Lalli E., Moser C., Walker A.P., McCabe E.R.B., Meitinger T., Monaco A.P., Sassone-Corsi P., Camerino G. 1994. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenital. Nature. 372, 635–641.

    Article  CAS  PubMed  Google Scholar 

  30. Luo X., Ikeda Y., Parker K.L. 1994. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell. 77, 481–490.

    Article  CAS  PubMed  Google Scholar 

  31. Achermann J.C., Gu W.-X., Kotlar T.J., Meeks J.J., Sabacan L.P., Seminara S.B., Habiby R.L., Hindmarsh P.C., Bick D.P., Sherins R.J., Crowley W.F., Jr., Layman L.C., Jameson J.L. 1999. Mutational analysis of DAX1 in patients with hypogonadotropic hypogonadism or pubertal delay. J. Clin. Endocr. Metab. 84, 4497–4500.

    CAS  PubMed  Google Scholar 

  32. Jadhav U., Harris R.M., Jameson J.L. 2011. Hypogonadotropic hypogonadism in subjects with DAX1 mutations. Mol. Cell. Endocrinol. 346, 65–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Guggenheim M.A., McCabe E.R., Roig M., Goodman S.I., Lum G.M., Bullen W.W., Ringel S.P. 1980. Glycerol kinase deficiency with neuromuscular, skeletal, and adrenal abnormalities. Ann. Neurol. 7, 441–449.

    Article  CAS  PubMed  Google Scholar 

  34. Scheuerle A., Greenberg F., McCabe E.R. 1995. Dysmorphic features in patients with complex glycerol kinase deficiency. J. Pediatr. 126, 764–767.

    Article  CAS  PubMed  Google Scholar 

  35. Stanczak C.M., Chen Z., Zhang Y.H., Nelson S.F., McCabe E.R. 2007. Deletion mapping in Xp21 for patients with complex glycerol kinase deficiency using SNP mapping arrays. Hum. Mutat. 28, 235–242.

    Article  CAS  PubMed  Google Scholar 

  36. Lin L., Gu W.-X., Ozisik G., To W.S., Owen C.J., Jameson J.L., Achermann J.C. 2006. Analysis of DAX1 (NR0B1) and steroidogenic factor-1 (SF1/Ad4BP, NR5A1) in children and adults with primary adrenal failure: Ten years’ experience. J. Clin. Endocrinol. Metab. 91, 3048–3054.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Tyul’pakov A.N., Kalinchenko N.Yu. 2010. Clinical and molecular genetic characterization of ten cases of adrenal hypoplasia congenita caused by DAX1 defects. Probl. Endokrinol. 2, 3–9.

    Article  Google Scholar 

  38. Verrijn Stuart A.A., Ozisik G., de Vroede M.A., Giltay J.C., Sinke R.J., Peterson T.J., Harris R.M., Weiss J., Jameson J. 2007. An amino-terminal DAX1 (NROB1) missense mutation associated with isolated mineralocorticoid deficiency. J. Clin. Endocrinol. Metab. 92, 755–761.

    Article  CAS  PubMed  Google Scholar 

  39. Guoying C., Zhiya D., Wei W., Na L., Xiaoying L., Yuan X., Defen W. 2012. The analysis of clinical manifestations and genetic mutations in Chinese boys with primary adrenal insufficiency. J. Pediatr. Endocrinol. Metab. 25, 295–300.

    Article  PubMed  Google Scholar 

  40. Skinningsrud B., Husebye E.S., Gilfillan G.D., Frengen E., Erichsen A., Gervin K., Ormerod E., Egeland T., Undlien D.E. 2009. X-linked congenital adrenal hypoplasia with hypogonadotropic hypogonadism caused by an inversion disrupting a conserved noncoding element upstream of the NR0B1 (DAX1) gene. J. Clin. Endocrinol. Metab. 94, 4086–4093.

    Article  CAS  PubMed  Google Scholar 

  41. Bardoni B., Zanaria E., Guioli S., Floridia G., Worley K.C., Tonini G., Ferrante E., Chiumello G., McCabe, E.R.B., Fraccaro M., Zuffardi O., Camerino G. 1994. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat. Genet. 7, 497–501.

    Article  CAS  PubMed  Google Scholar 

  42. McCabe E.R.B. 1996. Sex and the single DAX1: Too little is bad, but can we have too much? (Editorial). J. Clin. Invest. 98, 881–882.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Sukumaran A., Desmangles J.C., Gartner L.A., Buchlis J. 2013. Duplication of dosage sensitive sex reversal area in a 46, XY patient with normal sex determining region of Y causing complete sex reversal. J. Pediatr. Endocrinol. Metab. 26, 775–779.

    Article  CAS  PubMed  Google Scholar 

  44. Achermann J.C., Ito M., Ito M., Hindmarsh P.C., Jameson J.L. 1999. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat. Genet. 22, 125–126.

    Article  CAS  PubMed  Google Scholar 

  45. Sekido R., Lovell-Badge R. 2008. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature. 453, 930–934.

    Article  CAS  PubMed  Google Scholar 

  46. Bernard P., Ryan L., Sim H., Czech D.P., Andrew H., Sinclair A.H., Koopman P., Harley V.R. 2012. Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the Tesco enhancer. Endocrinology. 153, 901–912.

    Article  CAS  PubMed  Google Scholar 

  47. Ludbrook L.M., Bernard P., Bagheri-Fam S., Ryan J., Sekido R., Wilhelm D., Lovell-Badge R., Harley V.R. 2012. Excess DAX1 leads to XY ovotesticular disorder of sex development (DSD) in mice by inhibiting steroidogenic factor-1 (SF1) activation of the testis enhancer of SRY-box-9 (Sox9). Endocrinology. 153, 1948–1958.

    Article  CAS  PubMed  Google Scholar 

  48. Suzuki T., Kasahara M., Yoshioka H., Morohashi K., Umesono K. 2003. LXXLL-related motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Mol. Cell Biol. 23, 238–249.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Holter E., Kotaja N., Mäkela S., Strauss L., Kietz S., Jänne O.A., Gustafsson J.A., Palvimo J.J., Treuter E. 2002. Inhibition of androgen receptor (AR) function by the reproductive orphan nuclear receptor DAX-1. Mol. Endocrinol. 16, 515–528.O

    Article  CAS  PubMed  Google Scholar 

  50. Agoulnik I.U., Krause W.C., Bingman W.E., Rahman H.T., Amrikachi M., Ayala G.E., Weigel N.L. 2003. Repressors of androgen and progesterone receptor action. J. Biol. Chem. 278, 31136–31148.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang H., Thomsen J.S., Johansson L., Gustafsson J.A., Treuter E. 2000. DAX-1 functions as an LXXLL-containing corepressor for activated estrogen receptors. J. Biol. Chem. 275, 39855–39859.

    Article  CAS  PubMed  Google Scholar 

  52. Faulds M.H., Olsen H., Helguero L.A., Gustafsson J.A., Haldosén L.A. 2004. Estrogen receptor functional activity changes during differentiation of mammary epithelial cells. Mol. Endocrinol. 18, 412–421.

    Article  CAS  PubMed  Google Scholar 

  53. Song K.H., Park Y.Y., Park K.C., Hong C.Y., Park J.H., Shong M., Lee K., Choi H.S. 2004. The atypical orphan nuclear receptor DAX-1 interacts with orphan nuclear receptor Nur77 and represses its transactivation. Mol. Endocrinol. 18, 1929–1940.

    Article  CAS  PubMed  Google Scholar 

  54. Nedumaran B., Hong S., Xie Y.B., Kim Y.H., Seo W.Y., Lee M.W., Lee C.H., Koo S.H., Choi H.S. 2009. DAX-1 acts as a novel corepressor of orphan nuclear receptor HNF4alpha and negatively regulates gluconeogenic enzyme gene expression. J. Biol. Chem. 284, 27511–27523.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Nedumaran B., Kim G.S., Hong S., Yoon Y.S., Kim Y.H., Lee C.H., Lee Y.C., Koo S.H., Choi H.S. 2010. Orphan nuclear receptor DAX-1 acts as a novel corepressor of liver X receptor alpha and inhibits hepatic lipogenesis. J. Biol. Chem. 285, 9221–9232.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Li J., Lu Y., Liu R., Xiong X., Zhang Z., Zhang X., Ning G., Li X. 2011. DAX1 suppresses FXR transactivity as a novel co-repressor. Biochem. Biophys. Res. Commun. 412, 660–666.

    Article  CAS  PubMed  Google Scholar 

  57. Laurenzana E.M., Chen T., Kannuswamy M., Sell B.E., Strom S.C., Li Y., Omiecinski C.J. 2012. The orphan nuclear receptor DAX-1 functions as a potent corepressor of the constitutive androstane receptor (NR1I3). Mol. Pharmacol. 82, 918–928.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Crawford P.A., Dorn C., Sadovsky Y., Milbrandt J. 1998. Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to steroidogenic factor 1. Mol. Cell. Biol. 18, 2949–2956.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Altincicek B., Tenbaum S.P., Dressel U., Thormeyer D., Renkawitz R., Baniahmad A. 2000. Interaction of the corepressor Alien with DAX-1 is abrogated by mutations of DAX-1 involved in adrenal hypoplasia congenita. J. Biol. Chem. 275, 7662–7667.

    Article  CAS  PubMed  Google Scholar 

  60. Zhou J., Oakley R.H., Cidlowski J.A. 2008. DAX-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X-chromosome, gene 1) selectively inhibits transactivation but not transrepression mediated by the glucocorticoid receptor in a LXXLL-dependent manner. Mol. Endocrinol. 22, 1521–1534.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Iyer A.K., Zhang Y.-H., McCabe E.R.B. 2007. LXXLL motifs and AF-2 domain mediate SHP (NR0B2) homodimerization and DAX1 (NR0B1)-DAX1A heterodimerization. Mol. Genet. Metab. 92, 151–159.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Iyer A.K., Zhang Y.-H., McCabe E.R.B. 2006. Dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX1) (NR0B1) and small heterodimer partner (SHP) (NR0B2) form homodimers individually, as well as DAX1-SHP heterodimers. Mol. Endocrinol. 20, 2326–2342.

    Article  CAS  PubMed  Google Scholar 

  63. Gummow B.M., Scheys J.O., Cancelli V.R., Hammer G.D. 2006. Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex. Mol. Endocrinol. 20, 2711–2723.

    Article  CAS  PubMed  Google Scholar 

  64. Park Y.Y., Ahn S.W., Kim H.J., Kim J.M., Lee I.K., Kang H., Choi H.S. 2005. An autoregulatory loop controlling orphan nuclear receptor DAX-1 gene expression by orphan nuclear receptor ERRg. Nucleic Acids Res. 33, 6756–6768.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Xu B., Yang W.H., Gerin I., Hu C.D., Hammer G.D., Koenig R.J. 2009. Dax-1 and steroid receptor RNA activator (SRA) function as transcriptional coactivators for steroidogenic factor 1 in steroidogenesis. Mol. Cell. Biol. 29, 1719–1734.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Ferraz-de-Souza B., Martin F., Mallet D., Hudson-Davies R.E., Cogram P., Lin L., Gerrelli D., Beuschlein F., Morel Y., Huebner A., Achermann J.C. 2009. CITED and PBX1 in human adrenal development and disease. J. Clin. Endocrin. Metab. 94, 678–683.

    Article  CAS  Google Scholar 

  67. Jordan B.K., Mohammed M., Ching S.T., Délot E., Chen X.N., Dewing P., Swain A., Rao P.N., Elejalde B.R., Vilain E. 2001. Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am. J. Hum. Genet. 68, 1102–1109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Bernard P., Fleming A., Lacombe A., Harley V.R., Vilain E. 2008. Wnt4 inhibits beta-catenin/TCF signalling by redirecting beta-catenin to the cell membrane. Biol. Cell. 100, 167–177.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Mizusaki H., Kawabe K., Mukai T., Ariyoshi E., Kasahara M., Yoshioka H., Swain A., Morohashi K. 2003. Dax-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1) gene transcription is regulated by Wnt4 in the female developing gonad. Mol. Endocrinol. 17, 507–519.

    Article  CAS  PubMed  Google Scholar 

  70. Tamai K.T., Monaco L., Alastalo T.P., Lalli E., Parvinen M., Sassone-Corsi P. 1996. Hormonal and developmental regulation of DAX-1 expression in Sertoli cells. Mol. Endocrinol. 10, 1561–1596.

    CAS  PubMed  Google Scholar 

  71. Osman H., Murigande C., Nadakal A., Capponi A.M. 2002. Repression of DAX-1 and induction of SF-1 expression: Two mechanisms contributing to the activation of aldosterone biosynthesis in adrenal glomerulosa cells. J. Biol. Chem. 277, 41259–41267.

    Article  CAS  PubMed  Google Scholar 

  72. Kinyamu H.K., Chen J., Archer T.K. 2005. Linking the ubiquitin-proteasome pathway to chromatin remodeling/modification by nuclear receptors. J. Mol. Endocrinol. 34, 281–297.

    Article  CAS  PubMed  Google Scholar 

  73. Lecker S.H., Goldberg A.L., Mitch W.E. 2006. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 17, 1807–1819.

    Article  CAS  PubMed  Google Scholar 

  74. Kirisako T., Kamei K., Murata S., Kato M., Fukumoto H., Kanie M., Sano S., Tokunaga F., Tanaka K., Iwai K. 2006. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Ehrlund A., Anthonisen E.H., Gustafsson N., Venteclef N., Robertson Remen K., Damdimopoulos A.E., Galeeva A., Pelto-Huikko M., Lalli E., Steffensen K.R., Gustafsson J.A., Treuter E. 2009. E3 ubiquitin ligase RNF31 cooperates with DAX-1 in transcriptional repression of steroidogenesis. Mol. Cell. Biol. 29, 2230–2242.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Ahn S.W., Gang G.T., Kim Y.D., Ahn R.S., Harris R.A., Lee C.H., Choi H.S. 2013. Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells. J. Biol. Chem. 288, 15937–15946.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Reincke M., Beuschlein F., Lalli E., Arlt W., Vay S., Sassone-Corsi P., Allolio B. 1998. DAX-1 expression in human adrenocortical neoplasms: Implications for steroidogenesis. J. Clin. Endocrinol. Metab. 83, 2597–2600.

    Article  CAS  PubMed  Google Scholar 

  78. Ikuyama S., Mu Y.M., Ohe K., Nakagaki H., Fukushima T., Takayanagi R., Nawata H. 1998. Expression of an orphan nuclear receptor DAX-1 in human pituitary adenomas. Clin. Endocrinol. (Oxford). 48, 647–654.

    Article  CAS  Google Scholar 

  79. Nakamura Y., Suzuki T., Arai Y., Sasano H. 2009. Nuclear receptor DAX1 in human prostate cancer: A novel independent biological modulator. Endocr. J. 56, 39–44.

    Article  PubMed  Google Scholar 

  80. Saito S., Ito K., Suzuki T., Utsunomiya H., Akahira J., Sugihashi Y., Niikura H., Okamura K., Yaegashi N., Sasano H. 2005. Orphan nuclear receptor DAX-1 in human endometrium and its disorders. Cancer Sci. 96, 645–652.

    Article  CAS  PubMed  Google Scholar 

  81. Abd-Elaziz M., Akahira J., Moriya T., Suzuki T., Yaegashi N., Sasano H. 2003. Nuclear receptor DAX-1 in human common epithelial ovarian carcinoma: An independent prognostic factor of clinical outcome. Cancer Sci. 94, 980–985.

    Article  CAS  PubMed  Google Scholar 

  82. Oda T., Tian T., Inoue M., Ikeda J., Qiu Y., Okumura M., Aozasa K., Morii E. 2009. Tumorigenic role of orphan nuclear receptor NR0B1 in lung adenocarcinoma. Am. J. Pathol. 175, 1235–1245.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Susaki Y., Inoue M., Minami M., Sawabata N., Shimtani Y., Nakagiri T., Funaki S., Aozasa K., Okumura M., Morii E. 2012. Inhibitory effect of PPARΓ on NR0B1 in tumorigenesis of lung adenocarcinoma. Int. J. Oncol. 41, 1278–1284.

    CAS  PubMed  Google Scholar 

  84. García-Aragoncillo E., Carrillo J., Lalli E., Agra N., Gómez-López G., Pestaña A., Alonso J. 2008. DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing’s tumor cells. Oncogene. 27, 6034–6043.

    Article  PubMed  Google Scholar 

  85. Kinsey M., Smith R., Iyer A.K., McCabe E.R., Lessnick S.L. 2009. EWS/FLI and its downstream target NROB1 interact directly to modulate transcription and oncogenesis in Ewing’s sarcoma. Cancer Res. 69, 9047–9055.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Monument M.J., Johnson K.M., McIlvaine E., Abegglen L., Watkins W.S., Jorde L.B., Womer R.B., 5, Beeler N., Monovich L., Lawlor E.R., Bridge J.A., Schiffman J.D., Krailo M.D., Randall R.L., Lessnick S.L. 2014. Clinical and biochemical function of polymorphic NR0B1 GGAA-microsatellites in Ewing sarcoma: A report from the Children’s Oncology Group. PLoS ONE. 9, e104378.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Lanzino M., Maris P., Sirianni R., Barone I., Casaburi I., Chimento A., Giordano C., Morelli C., Sisci D., Rizza P., Bonofiglio D., Catalano S., Andò S. 2013. DAX-1, as an androgen-target gene, inhibits aromatase expression: A novel mechanism blocking estrogen-dependent breast cancer cell proliferation. Cell Death Dis. 4, e724.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Zhang H., Slewa A., Janssen E., Skaland I., Yu Y., Gudlaugsson E., Feng W., Kjellevold K., Søiland H., Baak J.P. 2011. The prognostic value of the orphan nuclear receptor DAX-1 (NROB1) in node-negative breast cancer. Anticancer. Res. 31, 443–449.

    PubMed  Google Scholar 

  89. Niakan K.K., Davis E.C., Clipsham R.C., Jiang M., Dehart D.B., Sulik K.K., McCabe E.R. 2006. Novel role for the orphan nuclear receptor Dax1 in embryogenesis, different from steroidogenesis. Mol. Genet. Metab. 88, 261–271.

    Article  CAS  PubMed  Google Scholar 

  90. Wang Q., Rao S., Chu J., Shen X., Levasseur D.N., Theunissen T.W., Orkin S.H. 2006. A protein interaction network for pluripotency of embryonic stem cells. Nature. 444, 364–368.

    Article  CAS  PubMed  Google Scholar 

  91. Wang Q., Cooney A.J. 2013. The role of nuclear receptors in embryonic stem cells. Adv. Exp. Med. Biol. 786, 287–306.

    Article  CAS  PubMed  Google Scholar 

  92. Kim J., Chu J., Shen X. Wang J., Orkin S.H. 2008. An extended transcriptional network for pluripotency of embryonic stem cells. Cell. 132, 1049–1061.

    Article  CAS  PubMed  Google Scholar 

  93. Sun C., Nakatake Y., Ura H., Akagi T., Niwa H., Koide H., Yokota T. 2008. Stem cell-specific expression of Dax1 is conferred by STAT3 and Oct3/4 in embryonic stem cells. Biochem. Biophys. Res. Commun. 372, 91–96.

    Article  CAS  PubMed  Google Scholar 

  94. Kelly V.R., Hammer G.D. 2011. LRH-1 and Nanog regulate Dax1 transcription in mouse embryonic stem cells. Mol. Cell Endocrinol. 332, 116–124.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Uranishi K., Akagi T., Sun C., Koide H., Yokota T. 2013. Dax1 associates with Esrrb and regulates its function in embryonic stem cells. Mol. Cell. Biol. 33, 2056–2066.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Sun C., Nakatake Y., Akagi T., Ura H., Matsuda T., Nishiyama A., Koide H., Ko M.S., Niwa H., Yokota T. 2009. Dax1 binds to Oct3/4 and inhibits its transcriptional activity in embryonic stem cells. Mol. Cell. Biol. 29, 4574–4583.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Kelly V.R., Xu B., Kuick R., Koenig R.J., Hammer G.D. 2010. Dax1 up-regulates Oct4 expression in mouse embryonic stem cells via LRH-1 and SRA. Mol. Endocrinol. 24, 2281–2291.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Khalfallah O., Rouleau M., Barbry P., Bardoni B., Lalli E. 2009. Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation. Stem Cells. 27, 1529–1537.

    Article  CAS  PubMed  Google Scholar 

  99. Xie C.Q., Jeong Y., Fu M., Bookout A.L., Garcia-Barrio M.T., Sun T., Kim B.H., Xie Y., Root S., Zhang J., Xu R.H., Chen Y.E., Mangelsdorf D.J. 2009. Expression profiling of nuclear receptors in human and mouse embryonic stem cells. Mol. Endocrinol. 23, 724–733.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Rubtsov.

Additional information

Original Russian Text © A.S. Orekhova, P.M. Rubtsov, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 1, pp. 75–88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orekhova, A.S., Rubtsov, P.M. DAX1, an unusual member of the nuclear receptor superfamily with diverse functions. Mol Biol 49, 65–76 (2015). https://doi.org/10.1134/S0026893315010124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315010124

Keywords

Navigation