Skip to main content
Log in

Prodigiosin from an Endofungal Bacterium Serratia marcescens D1 Inhibits Biofilm Formation in Gram-Positive Bacteria

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Prodigiosin, a pink-red pigment produced by many soil isolates of Serratia marcescens as well as by some marine bacterial isolates, is well documented for its bioactive properties. Here, we report the production of prodigiosin by an endofungal bacterium Serratia marcescens D1. The growth characteristics and pigment production were optimized for the bacterial isolate in liquid culture. The bacterial isolate was able to grow abundantly up to 35°C, while maximum pigment production was recorded between 25–30°C, and at pH 5. The pink-red pigment was isolated from the bacterial culture and purified using thin-layer chromatography. The identity of prodigiosin was confirmed by liquid chromatography—electrospray ionization—mass spectrometry (LC-ESI-MS). Antibacterial activity of prodigiosin was assessed against gram-positive and gram-negative bacteria. Prodigiosin showed potent antibacterial activity against gram-positive bacteria, while very low antibacterial activity was observed against gram-negative bacteria used in this study. The minimum inhibitory concentrations (MIC) of prodigiosin against Staphylococcus aureus, Bacillus subtilis and B. cereus were recorded as 3, 5, and 4 µg/mL, respectively. The pigment was able to cause damages to the plasma membrane of Bacillus subtilis and inhibited biofilm formation in B. subtilis and B. cereus, suggesting its active role against biofilm-derived antimicrobial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ahmed, Z.U. and Vining, L.C., Evidence for a chromosomal location of the genes coding for chloramphenicol production in Streptomyces venezuelae, J. Bacteriol., 1983, vol. 154, pp. 239–244.

    Article  CAS  Google Scholar 

  2. Blake, A.J., Hunter, G.A., and McNab, H., A short synthesis of prodigiosin analogues, J. Chem. Soc. Chem. Commun., 1990, vol. 10, pp. 734–736.

    Article  Google Scholar 

  3. Cang, S., Sanada, M., Johdo, O., Ohta, S., Nagamatsu, Y., and Yoshimoto, A., High production of prodigiosin by Serratia marcescens grown on ethanol, Biotechnol. Lett., 2000. vol. 22, pp. 1761–1765.

    Article  CAS  Google Scholar 

  4. Clements, T., Rautenbach, M., Ndlovu, T., Khan, S., and Khan, W., A metabolomics and molecular networking approach to elucidate the structures of secondary metabolites produced by Serratia marcescens strains, Front. Chem., 2021, vol. 9, p 633870. https://doi.org/10.3389/fchem.2021.633870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Danevčič, T., Borić Vezjak, M., Tabor, M., Zorec, M., and Stopar, D., Prodigiosin induces autolysins in actively grown Bacillus subtilis cells, Front. Microbiol. 2016, vol. 7. https://doi.org/10.3389/fmicb.2016.00027

  6. de Lima Procópio, R.E., da Silva, I.R., Martins, M.K., de Azevedo, J.L., and de Araújo, J.M., Antibiotics produced by Streptomyces, Brazil. J. Infect. Dis., 2012, vol. 16, pp. 466–471.

    Google Scholar 

  7. Delcour, A.H., Outer membrane permeability and antibiotic resistance, Biochim. Biophys. Acta—Proteins Proteomics, 2009, vol. 1794, pp. 808–816.

    Article  CAS  Google Scholar 

  8. Díaz, R.I.S., Regourd, J., Santacroce, P. V., Davis, J.T., Jakeman, D.L., and Thompson, A., Chloride anion transport and copper-mediated DNA cleavage by C-ring functionalized prodigiosenes, Chem. Commun. 2007, vol. 26, pp. 2701–2703. https://doi.org/10.1039/b701919j

    Article  CAS  Google Scholar 

  9. Gargallo-Viola, D., Enzyme polymorphism, prodigiosin production, and plasmid fingerprints in clinical and naturally occurring isolates of Serratia marcescens, J. Clin. Microbiol., 1989, vol. 27, pp. 860–868.

    Article  CAS  Google Scholar 

  10. Giri, A., Anandkumar, N., Muthukumaran, G., and Pennathur, G., A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil, BMC Microbiol., 2004, vol. 4, p. 11.

    Article  Google Scholar 

  11. Gondil, V.S., Asif, M., and Bhalla, T.C., Optimization of physicochemical parameters influencing the production of prodigiosin from Serratia nematodiphila RL2 and exploring its antibacterial activity, 3 Biotech, 2017, vol. 7, p. 338.

  12. Grasso, L.L., Martino, D.C., and Alduina, R., Production of antibacterial compounds from actinomycetes, in Actinobacteria-Basics and Biotechnological Applications, Martino, D.C., Ed., Rijeka: IntechOpen, 2016, pp. 177–198.

    Google Scholar 

  13. Haddix, P.L. and Shanks, R.M.Q., Prodigiosin pigment of Serratia marcescens is associated with increased biomass production, Arch. Microbiol., 2018, vol. 200, pp. 989–999. https://doi.org/10.1007/s00203-018-1508-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han, R., Xiang, R., Li, J., Wang, F., and Wang, C., High-level production of microbial prodigiosin: a review, J. Basic Microbiol., 2021, vol. 61, pp. 506–523. https://doi.org/https://doi.org/10.1002/jobm.202100101

    Article  CAS  Google Scholar 

  15. Han, S.B., Kim, H.M., Kim, Y.H., Lee, C.W., Jang, E.-S., Son, K.H., Kim, S.U., and Kim, Y.K., T-cell specific immunosuppression by prodigiosin isolated from Serratia marcescens, Int. J. Immunopharmacol., 1998, vol. 20, pp. 1–13.

    Article  CAS  Google Scholar 

  16. Hazarika, D.J., Gautom, T., Parveen, A., Goswami, G., Barooah, M., Modi, M.K., and Boro, R.C., Mechanism of interaction of an endofungal bacterium Serratia marcescens D1 with its host and non-host fungi, PLoS One, 2020, vol. 15, pp. 1–19. https://doi.org/10.1371/journal.pone.0224051

    Article  CAS  Google Scholar 

  17. Hejazi, A. and Falkiner, F.R., Serratia marcescens, J. Med. Microbiol., 1997, vol. 46, pp. 903–912.

    Article  CAS  Google Scholar 

  18. Ji, K., and Kim, Y.T., Antimicrobial activity of prodigiosin from Serratia sp. PDGS120915 against intestinal pathogenic bacteria, Microbiol. Biotechnol. Lett., 2019, vol. 47, pp. 459–464. https://doi.org/10.4014/mbl.1901.01006

    Article  CAS  Google Scholar 

  19. Khanafari, A., Assadi, M.M., and Fakhr, F.A., Review of prodigiosin, pigmentation in Serratia marcescens, Online J. Biol. Sci., 2006, vol. 6, p. 22700103.

    Google Scholar 

  20. Khanam, B. and Chandra, R., Comparative analysis of prodigiosin isolated from endophyte Serratia marcescens, Lett. Appl. Microbiol., 2018, vol. 66, pp. 194–201.

    Article  CAS  Google Scholar 

  21. Kimyon, Ö., Das, T., Ibugo, A.I., Kutty, S.K., Ho, K.K., Tebben, J., Kumar, N., and Manefield, M., Serratia secondary metabolite prodigiosin inhibits pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological molecules, Front. Microbiol., 2016, vol. 7, p. 972.

    PubMed  PubMed Central  Google Scholar 

  22. Kurbanoglu, E.B., Ozdal, M., Ozdal, O.G., Algur, O.F., Kurbanoglu, E.B., Ozdal, M., Ozdal, O.G., and Algur, O.F., Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone, Brazil. J. Microbiol., 2015, vol. 46, pp. 631–637.

    Article  Google Scholar 

  23. Lapenda, J.C., Silva, P.A., Vicalvi, M.C., Sena, K.X.F.R., and Nascimento, S.C., Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398, World J. Microbiol. Biotechnol., 2015, vol. 31, pp. 399–406.

    Article  CAS  Google Scholar 

  24. Lianou, A., Nychas, G.-J.E., and Koutsoumanis, K.P., Strain variability in biofilm formation: a food safety and quality perspective, Food Res. Int., 2020, vol. 137, p. 109424. https://doi.org/https://doi.org/10.1016/j.foodres.2020.109424

    Article  CAS  Google Scholar 

  25. Lin, C., Jia, X., Fang, Y., Chen, L., Zhang, H., Lin, R., and Chen, J., Enhanced production of prodigiosin by Serratia marcescens FZSF02 in the form of pigment pellets, Electron. J. Biotechnol., 2019, vol. 40, pp. 58–64. https://doi.org/https://doi.org/10.1016/j.ejbt.2019.04.007

    Article  CAS  Google Scholar 

  26. Meng, X., Wang, W., Xie, Z., Li, P., Li, Y., Guo, Z., Lu, Y., Yang, J., Guan, K., Lu, Z., Tan, H., and Chen, Y., Neomycin biosynthesis is regulated positively by AfsA-g and NeoR in Streptomyces fradiae CGMCC 4.7387, Sci. China Life Sci., 2017, vol. 60, pp. 980–991.

    Article  CAS  Google Scholar 

  27. Montaner, B., Navarro, S., Piqué, M., Vilaseca, M., Martinell, M., Giralt, E., Gil, J., and Pérez-Tomás, R., Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines, Br. J. Pharmacol., 2000, vol. 131, pp. 585–593.

    Article  CAS  Google Scholar 

  28. Montaner, B. and Pérez-Tomás, R., Prodigiosin-induced apoptosis in human colon cancer cells, Life Sci., 2001, vol. 68, pp. 2025–2036.

    Article  CAS  Google Scholar 

  29. Naik, C., Srisevita, J.M., Shushma, K.N., Noorin, F., Shilpa, A.C., Muttanna, C.D., Darshan, N., and Sannadurgappa, D., Peanut oil cake: a novel substrate for enhanced cell growth and prodigiosin production from Serratia marcescens CF-53, J. Res. Biol., 2012, vol. 2, pp. 549–557.

    Google Scholar 

  30. O’Toole, G.A., Microtiter dish biofilm formation assay, J. Vis. Exp., 2011, vol. 47, p. e2437.

    Google Scholar 

  31. Patil, C.D., Patil, S. V., Salunke, B.K., and Salunkhe, R.B., Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi, Parasitol. Res., 2011, vol. 109, pp. 1179–1187.

    Article  Google Scholar 

  32. Peschke, U., Schmidt, H., Zhang, H.-Z., and Piepersberg, W., Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11, Mol. Microbiol., 1995, vol. 16, pp. 1137–1156.

    Article  CAS  Google Scholar 

  33. Pissowotzki, K., Mansouri, K., and Piepersberg, W., Genetics of streptomycin production in Streptomyces griseus: molecular structure and putative function of genes strELMB2N, Mol. Gen. Genet., 1991, vol. 231, pp. 113–123.

    Article  CAS  Google Scholar 

  34. Plakunov, V.K., Mart, S.V, Teteneva, N.A., and Zhurina, M.V, Controlling of microbial biofilms formation : anti- and probiofilm agents, Microbiology (Moscow), 2017, vol. 86, pp. 423–438. https://doi.org/10.1134/S0026261717040129

    Article  CAS  Google Scholar 

  35. Pryce, L.H. and Terry, F.W., Spectrophotometric assay of gene expression: Serratia marcescens pigmentation, Bioscene, 2000, vol. 26, pp. 3–13.

    Google Scholar 

  36. Romanowski, E.G., Lehner, K.M., Martin, N.C., Patel, K.R., Callaghan, J.D., Stella, N.A., and Shanks, R.M., Thermoregulation of prodigiosin biosynthesis by Serratia marcescens is controlled at the transcriptional level and requires HexS, Polish J. Microbiol., 2019, vol. 68, p. 43.

    Article  Google Scholar 

  37. Slater, H., Crow, M., Everson, L., and Salmond, G.P., Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum sensing dependent and independent pathways, Mol. Microbiol., 2003, vol. 47, pp. 303−320.

    Article  CAS  Google Scholar 

  38. Somma, A., di, Inhibition of bacterial biofilm formation, in Bacterial Biofilms, Moretta, A., Ed., Rijeka: IntechOpen, 2020.

  39. Song, M.-J., Bae, J., Lee, D.-S., Kim, C.-H., Kim, J.-S., Kim, S.-W., and Hong, S.-I., Purification and characterization of prodigiosin produced by integrated bioreactor from Serratia sp. KH-95, J. Biosci. Bioeng., 2006, vol. 101, pp. 157–161.

    Article  CAS  Google Scholar 

  40. Stocks, S.M., Mechanism and use of the commercially available viability stain, BacLight, Cytom. Part A, 2004, vol. 61, pp. 189–195.

    Article  CAS  Google Scholar 

  41. Suryawanshi, R.K., Patil, C.D., Koli, S.H., Hallsworth, J.E., and Patil, S.V., Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage, Nat. Prod. Res., 2017, vol. 31, pp. 572–577.

    Article  CAS  Google Scholar 

  42. Wang, S.-L., Wang, C.-Y., Yen, Y.-H., Liang, T.-W., Chen, S.-Y., and Chen, C.-H., Enhanced production of insecticidal prodigiosin from Serratia marcescens TKU011 in media containing squid pen, Proc. Biochem., 2012, vol. 47, pp. 1684–1690.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Department of Biotechnology, Govt. of India for providing funds for conducting the research work under the project sanction number BT/552/NE/U-Excel/2014. The authors are grateful to the Department of Agricultural Biotechnology and DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University for providing laboratory space and required facilities for carrying out the study. The authors also thank Guwahati Biotech Park Incubation Centre (GBPIC), Guwahati Biotech Park, Guwahati, for providing the LC-ESI-MS facility.

Funding

This study was funded by the Department of Biotechnology (DBT), Government of India under the project sanction number BT/552/NE/U-Excel/2014, without any influence over the study design, experimental procedures, data collection, results or the decision to publish this article.

Author information

Authors and Affiliations

Authors

Contributions

RCB conceived the idea and acquired funding; DJH and RCB designed the experiments; DJH optimized the pigment production, prepared the manuscript and figures; DJH, RK and TG isolated, purified and characterized the pigment; DJH and MK performed all the bioactivities; DJH and GG analyzed the data; MB and RCB provided technical supervision throughout the study; all the authors read, critically revised and agreed to the contents of the manuscript.

Corresponding author

Correspondence to R. C. Boro.

Ethics declarations

This article does not contain any research with animals or human volunteers.The authors hereby declare that they have no conflict of interests.

Additional information

#Current affiliation: Royal School of Bio-Sciences, Royal Global University, Assam, Guwahati-781035 India.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, D.J., Kakoti, M., Kalita, R. et al. Prodigiosin from an Endofungal Bacterium Serratia marcescens D1 Inhibits Biofilm Formation in Gram-Positive Bacteria. Microbiology 90, 829–838 (2021). https://doi.org/10.1134/S0026261722010052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722010052

Keywords:

Navigation