Skip to main content
Log in

The Predominance of Proteobacteria and Cyanobacteria in the Cycas dolichophylla Coralloid Roots Revealed by 16S rRNA Metabarcoding

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The endophytes of plants are receiving increased attention since they have important functions for improving plant growth and fitness, especially in more challenging environmental conditions. The adaptation of cycads, an ancient gymnosperm taxon, to arid and nutrient-limited habitats is thought to be dependent on their symbiosis with nitrogen-fixing Cyanobacteria. We investigated the endophytic community in seeds, taproots, and young and mature coralloid roots of Cycas dolichophylla using 16S rRNA metabarcoding. Geographically distinct populations were studied in China and Vietnam. Higher endophyte diversity was found in Vietnamese populations than in Chinese ones. A significant difference in the bacterial endophytic community was identified between populations of mature coralloid roots from Chinese and Vietnamese samples, with the predominance of Alpha-, Gamma-, and Beta-Proteobacteria in the Vietnamese samples. Moreover, five core endophytic families, Nostocaceae, Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae, and Rhizobiaceae were revealed among all the samples. This study offers a robust knowledge of cycad microbial ecology and lends guidelines to the investigation of the adaptation mechanism of cycads in arid and nutrient-poor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ahern, C.P. and Staff, I.A., Symbiosis in cycads: the origin and development of coralloid roots in Macrozamia communis (Cycadaceae), Am. J. Bot., 1994, vol., pp. 1559‒1570.

  2. Arndt, D., Xia, J., Liu, Y., Zhou, Y., Guo, A.C., Cruz, J.A., Sinelnikov, I., Budwill, K., Nesbø, C.L., and Wishart, D.S., METAGENassist: a comprehensive web server for comparative metagenomics, Nucleic Acids Res., 2012, vol. 40, pp. W88‒W95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baulina, O., and Lobakova, E., Heterocysts with reduced cell walls in populations of cycad cyanobionts, Microbiology (Moscow), 2003, vol. 72, pp. 713‒722.

    Article  CAS  Google Scholar 

  4. Beckers, B., De Beeck, M.O., Weyens, N., Boerjan, W., and Vangronsveld, J., Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees, Microbiome, 2017, vol. 5, pp. 25‒42.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., and Gordon, J.I., QIIME allows analysis of high-throughput community sequencing data, Nature Methods, 2010, vol. 7, pp. 335‒336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carrell, A.A. and Frank, A.C., Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation, Front. Microbiol., 2014, vol. 5, p. 333.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Compant, S., Mitter, B., Colli-Mull, J.G., Gangl, H., and Sessitsch, A., Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization, Microb. Ecol., 2011, vol. 62, pp. 188‒197.

    Article  PubMed  Google Scholar 

  8. Compant, S., Nowak, J., Coenye, T., Clément, C., and Ait Barka, E., Diversity and occurrence of Burkholderia spp. in the natural environment, FEMS Microbiol. Rev., 2008, vol. 32, pp. 607−626.

    Article  CAS  PubMed  Google Scholar 

  9. Costa, J.L., Romero, E.M., and Lindblad, P., Sequence based data supports a single Nostoc strain in individual coralloid roots of cycads, FEMS Microbiol. Ecol., 2004, vol. 49, pp. 481‒487.

    Article  CAS  PubMed  Google Scholar 

  10. Cuddy, W.S., Neilan, B.A., and Gehringer, M.M., Comparative analysis of cyanobacteria in the rhizosphere and as endosymbionts of cycads in drought-affected soils, FEMS Microbiol. Ecol., 2012, vol. 80, pp. 204‒215.

    Article  CAS  PubMed  Google Scholar 

  11. Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., and Hacquard, S., Microbial interkingdom interactions in roots promote Arabidopsis survival, Cell, 2018, vol. 175, pp. 973‒983.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Doyle, J., DNA protocols for plants, in Molecular Techniques in Taxonomy, Hewitt, G.M., Ed., Berlin: Springer, 1991, pp. 283‒293.

    Google Scholar 

  13. Edgar, R.C., Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 2010, vol. 26, pp. 2460‒2461.

    Article  CAS  PubMed  Google Scholar 

  14. Gao, Z. and Thomas, B.A., A review of fossil cycad megasporophylls, with new evidence of Crossozamia pomel and its associated leaves from the lower Permian of Taiyuan, China, Rev. Palaeobot. Palynol., 1989, vol. 60, pp. 205‒223.

    Article  Google Scholar 

  15. Gehringer, M.M., Pengelly, J.J., Cuddy, W.S., Fieker, C., Forster, P.I., and Neilan, B.A., Host selection of symbiotic cyanobacteria in 31 species of the Australian cycad genus: Macrozamia (Zamiaceae), Mol. Plant-Microbe Interact., 2010, vol. 23, pp. 811‒822.

    Article  CAS  PubMed  Google Scholar 

  16. Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R.K., Gowda, C.L.L., and Krishnamurthy, L., Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech., 2015, vol. 5, pp. 355‒377.

  17. Grobbelaar, N., Scott, W., Hattingh, W., and Marshall, J., The identification of the coralloid root endophytes of the southern African cycads and the ability of the isolates to fix dinitrogen, S. Afr. J. Bot., 1987, vol. 53, pp. 111‒118.

    Article  Google Scholar 

  18. Gutiérrez-García, K., Bustos-Díaz, E.D., Corona-Gómez, J.A., Ramos-Aboites, H.E., Sélem-Mojica, N., Cruz-Morales, P., Pérez-Farrera, M.A., Barona-Gómez, F., and Cibrián-Jaramillo, A., Cycad coralloid roots contain bacterial communities including Cyanobacteria and Caulobacter spp. that encode niche-specific biosynthetic gene clusters, Genome Biol. Evol., 2018, vol. 11, pp. 319‒334.

    Article  PubMed Central  Google Scholar 

  19. Halliday, J. and Pate, J., Symbiotic nitrogen fixation by coralloid roots of the cycad Macrozamia riedlei: physiological characteristics and ecological significance, Funct. Plant Biol., 1976, vol. 3, pp. 349‒358.

    Article  CAS  Google Scholar 

  20. Hallmann, J., Quadt-Hallmann, A., Mahaffee, W.F., and Kloepper, J.W., Bacterial endophytes in agricultural crops, Can. J. Microbiol., 1997, vol. 43, pp. 895‒914.

    Article  CAS  Google Scholar 

  21. Hardoim, P.R., Van Overbeek, L.S., Berg, G., Pirttilä, A.M., Compant, S., Campisano, A., Döring, M., and Sessitsch, A., The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes, Microbiol. Mol. Biol. Res., 2015, vol. 79, pp. 293‒320.

    Article  Google Scholar 

  22. Hill, K.D., The genus Cycas (Cyeadaceae) in China, Telopea, 2008, vol. 12, pp. 71‒118.

    Article  Google Scholar 

  23. Huang, C.L., Jian, F.Y., Huang, H.J., Chang, W.C., Wu, W.L., Hwang, C.C., Lee, R.H., and Chiang, T.Y., Deciphering mycorrhizal fungi in cultivated Phalaenopsis microbiome with next-generation sequencing of multiple barcodes, Fungal Divers., 2014, vol. 66, pp. 77‒88.

    Article  Google Scholar 

  24. Kumar, U., Panneerselvam, P., Govindasamy, V., Vithalkumar, L., Senthilkumar, M., Banik, A., and Annapurna, K., Long-term aromatic rice cultivation effect on frequency and diversity of diazotrophs in its rhizosphere, Ecol. Eng., 2017, vol. 101, pp. 227‒236.

    Article  Google Scholar 

  25. Li, Y., Wang, Q., Wang, L., He, L.Y., and Sheng, X.F., Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: implications for Sorghum sudanense biomass production and phytostabilization, Ecotox. Environ. Safe., 2016, vol. 124, pp. 163‒168.

    Article  CAS  Google Scholar 

  26. Lobakova, E., Orazova, M.K., and Dobrovolskaya, T., The structure of cyanobacterial communities formed during the degradation of apogeotropic roots of cycads, Microbiology (Moscow), 2003, vol. 72, pp. 634‒637.

    Article  CAS  Google Scholar 

  27. Lopez, B.R., Tinoco-Ojanguren, C., Bacilio, M., Mendoza, A., and Bashan, Y., Endophytic bacteria of the rock-dwelling cactus Mammillaria fraileana affect plant growth and mobilization of elements from rocks, Environ. Exp. Bot., 2012, vol. 81, pp. 26‒36.

    Article  CAS  Google Scholar 

  28. Lu, Y.F., Studies on Root System and Fleshy Root Structure of Cycas, Nanning: Guangxi Univ., 2006.

    Google Scholar 

  29. Milindasuta, B.E., Developmental anatomy of coralloid roots in cycads, Am. J. Bot., 1975, pp. 468‒472.

  30. Moyes, A.B., Kueppers, L.M., Pett-Ridge, J., Carper, D.L., Vandehey, N., O’Neil, J., and Frank, A.C., Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer, New Phytol., 2016, vol. 210, pp. 657‒668.

    Article  CAS  PubMed  Google Scholar 

  31. Nagalingum, N., Marshall, C., Quental, T., Rai, H., Little, D., and Mathews, S., Recent synchronous radiation of a living fossil, Science, 2011, vol. 334, pp. 796‒799.

    Article  CAS  PubMed  Google Scholar 

  32. Nathanielsz, C.P. and Staff, I.A., On the occurrence of intracellular blue-green algae in cortical cells of the apogeotropic roots of Macrozamia communis L. Johnson, Ann. Bot., 1975, vol. 39, pp. 363‒368.

    Article  Google Scholar 

  33. Octavia, S. and Lan, R., The family Enterobacteriaceae, in The Prokaryotes: Gammaproteobacteria, 2014, pp. 225‒286.

    Google Scholar 

  34. Oliveros, J.C., VENNY. An interactive tool for comparing lists with Venn diagrams, 2007. http://bioinfogp. cnb.csic.es/tools/venny/index.html.

  35. Peel, M.C., Finlayson, B.L., and Mcmahon, T.A., Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth System Sci., 2007, vol. 11, pp. 259‒263.

    Article  Google Scholar 

  36. Pielou, E.C., The measurement of diversity in different types of biological collections, J.Theor. Biol., 1966, vol. 13, pp. 131‒144.

    Article  Google Scholar 

  37. Puente, M.E., Li, C.Y., and Bashan, Y., Endophytic bacteria in cacti seeds can improve the development of cactus seedlings, Environ. Exp. Bot., 2009a, vol. 66, pp. 402‒408.

    Article  CAS  Google Scholar 

  38. Puente, M.E., Li, C.Y., and Bashan, Y., Rock-degrading endophytic bacteria in cacti, Environ. Exp. Bot., 2009b, vol. 66, pp. 389‒401.

    Article  CAS  Google Scholar 

  39. R Core Team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. 2019. https://www.R-project.org/.

  40. Rai, A.N., Bergman, B., and Rasmussen, U., Cyanobacteria in Symbiosis, Dordrecht: Kluwer, 2002.

    Book  Google Scholar 

  41. Ramirez, K.S., Leff, J.W., Barberán, A., Bates, S.T., Betley, J., Crowther, T.W., Kelly, E.F., Oldfield, E.E., Shaw, E.A., and Steenbock, C., Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally, P. Roy. Soc. B-Biol. Sci., 2014, vol. 281, p. 20141988.

    Google Scholar 

  42. Ramirez, K.S., Snoek, L.B., Koorem, K., Geisen, S., Bloem, L.J., ten Hooven, F., Kostenko, O., Krigas, N., Manrubia, M., Caković, D., van Raaij, D., Tsiafouli, M.A., Vreš, B., Čelik, T., Weser, C., et al., Range-expansion effects on the belowground plant microbiome, Nature Ecol. Evol., 2019, vol. 3, pp. 604‒611.

    Article  Google Scholar 

  43. Schulz, B.J.E., Boyle, C.J.C., and Sieber, T.N., Microbial root endophytes in Soil Biology 9, Varma, A., Ed., Berlin: Springer, 2006, vol. 9.

    Google Scholar 

  44. Shannon, C.E., A mathematical theory of communication, ACM SIGMOBILE Mob. Comput. Commun. Rev., 2001, vol. 5, pp. 3‒55.

    Article  Google Scholar 

  45. Simpson, E.H., Measurement of diversity, Nature, 1949, vol. 163, p. 688.

    Article  Google Scholar 

  46. Stone, J.K., Bacon, C.W., and White, J., An overview of endophytic microbes: endophytism defined, in Microbial Endophytes, Bacon, C.W. and White, J., Eds., New York: Marcel Dekker, 2000, pp. 3‒33.

    Google Scholar 

  47. Tomitani, A., Knoll, A.H., Cavanaugh, C.M., and Ohno, T., The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives, P. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 5442‒5447.

    Article  CAS  Google Scholar 

  48. Usher, K.M., Bergman, B., and Raven, J.A., Exploring cyanobacterial mutualisms, Annu. Rev. Ecol. Evol. Syst., 2007, vol. 38, pp. 255‒273.

    Article  Google Scholar 

  49. Vessey, J.K., Pawlowski, K., and Bergman, B., Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads, in Root Physiology: From Gene to Function, Lambers, H. and Colmer, T.D., Eds., The Netherlands: Springer, 2005, pp. 51‒78.

    Google Scholar 

  50. Werner, G.D. and Kiers, E.T., Order of arrival structures arbuscular mycorrhizal colonization of plants, New Phytol., 2015, vol. 205, pp. 1515‒1524.

    Article  CAS  PubMed  Google Scholar 

  51. Wu, C.S., Chaw, S.M., and Huang, Y.Y., Chloroplast phylogenomics indicates that Ginkgo biloba is sister to cycads, Genome Biol. Evol., 2013, vol. 5, pp. 243‒254.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xiong, J., Liu, Y., Lin, X., Zhang, H., Zeng, J., Hou, J., Yang, Y., Yao, T., Knight, R., and Chu, H., Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau, Environ. Microbiol., 2012, vol. 14, pp. 2457‒2466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yamada, S., Ohkubo, S., Miyashita, H., and Setoguchi, H., Genetic diversity of symbiotic cyanobacteria in Cycas revoluta (Cycadaceae), FEMS Microbiol. Ecol., 2012, vol. 81, pp. 696‒706.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, J., Liu, Y.X., Zhang, N., Hu, B., Jin, T., Xu, H., Qin, Y., Yan, P., Zhang, X., Guo, X., Hui, J., Cao, S., Wang, X., Wang, C., Wang, H., et al., NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice, Nature Biotechnol., 2019, vol. 37, pp. 676‒684.

    Article  CAS  Google Scholar 

  55. Zheng, Y., Chiang, T.Y., Huang, C.L., and Gong, X., Highly diverse endophytes in roots of Cycas bifida, J. Microbiol., 2018, vol. 56, pp. 337‒345.

    Article  PubMed  Google Scholar 

  56. Zheng, Y. and Gong, X., Niche differentiation rather than biogeography shapes the diversity and composition of microbiome of Cycas panzhihuaensis, Microbiome, 2019, vol. 7, p. 152.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zheng, Y., Liu, J., Feng, X., and Gong, X., The distribution, diversity, and conservation status of Cycas in China, Ecol. Evol., 2017, vol. 7, pp. 3212‒3224.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zheng, Y., Liu, J., and Gong, X., Tectonic and climatic impacts on the biota within the Red River Fault, evidence from phylogeography of Cycas dolichophylla (Cycadaceae), Sci. Rep., 2016, vol. 6, p. srep33540.

  59. Zhu, C., Fine structure of blue-green algae and the cells lined along the endophyte cavity in the coralloid root of Cycas, Acta Bot. Sin., 1982, vol. 24, pp. 109‒114.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Jian Liu for help with manuscript revision.

Funding

This work was supported by the Joint Funds of the National Natural Science Foundation of China and the Yunnan Natural Science Foundation [U1136602]. Strategic Biological Resources Service Network Programme of Chinese Academy of Sciences [ZSSD-006].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Gong.

Ethics declarations

Conflict of interests. The authors declare no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Chiang, TY., Huang, CL. et al. The Predominance of Proteobacteria and Cyanobacteria in the Cycas dolichophylla Coralloid Roots Revealed by 16S rRNA Metabarcoding. Microbiology 90, 805–815 (2021). https://doi.org/10.1134/S0026261721060175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721060175

Keywords:

Navigation