Skip to main content
Log in

Diversity of the bphA1 Genes in a Microbial Community from Anthropogenically Contaminated Soil and Isolation of New Pseudomonads Degrading Biphenyl/Chlorinated Biphenyls

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Molecular biological and cultivation-based approaches were used to investigate the microbial community of tehnogenic soil contaminated with poorly degradable toxic (chlorinated) aromatic compounds. Diversity of the bphA1 genes, the key genes for the degradation of biphenyl/polychlorinated biphenyls (PCB) was assessed, and new bacterial degraders of biphemyl/PCB were isolated. Cloning of the PCR product obtained using the DNA isolated from soil as a template and the primers to the biphenyl 2,3-dioxygenase α-subunit gene (bphA1) revealed two types of the genes of aromatic dioxygenases (DO) with the highest similarity (97.8‒99.5%) to the genes encoding the Rieske cluster of DO α-subunits (bphA1) from uncultured bacteria. Two biphenyl-degrading isolates obtained from an enrichment culture of a soil sample incubated with biphenyl were identified as Pseudomonas (VRP2-6 and VRP2-2). According to their 16S rRNA gene sequences, they exhibited the highest similarity to the type strain of P. taiwanensis (99%) and P. alcaligenes (100%), respectively. Analysis of the bphA1 sequences of strains VRP2-6 and VRP2-2 revealed the similarity to those of the known biphenyl-degrading pseudomonads not exceeding 97.3%. The isolate VRP2-6 efficiently utilized ortho- and para-monochlorinated biphenyls and degraded dichlorinated biphenyl oxidizing both the ortho- and para-chlorinated rings of the biphenyl molecule. New pseudomonad strains may be of interest for development of biotechnologies aimed at monitoring and remediation of biphenyl/PCB-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Adebusoye, S.A., Picardal, F.W., Ilori, M.O., Amund, O.O., Fuqua, C., and Grindle, N., Growth on dichlorobiphenyls with chlorine substitution on each ring by bacteria isolated from contaminated African soils, Appl. Microbiol. Biotechnol., 2007, vol. 74, pp. 484–492.

    Article  CAS  PubMed  Google Scholar 

  2. Aguirre de Cárcer, D., Martín, M., Karlson, U., and Rivillam R., Changes in bacterial populations and in biphenyl dioxygenase gene diversity in a polychlorinated biphenyl-polluted soil after introduction of willow trees for rhizoremediation, Appl. Environ. Microbiol., 2007, vol. 73, pp. 6224–6232.

    Article  CAS  Google Scholar 

  3. Cébron, A., Norini, M.P., Beguiristain, T., and Leyval C., Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples, J. Microbiol. Methods, 2008, vol. 73, pp. 148‒159.

    Article  CAS  PubMed  Google Scholar 

  4. Chae, J.-C., Kim, E., Park, S.-H., and Kim, C.-K., Catabolic degradation of 4-chlorobiphenyl by Pseudomonas sp. DJ-12 via consecutive reaction of meta-cleavage and hydrolytic dechlorination, Biotechnol. Bioproc. Eng., 2000, vol. 5, pp. 449‒455.

    Article  CAS  Google Scholar 

  5. Chakraborty, J. and Das, S., Characterization of the metabolic pathway and catabolic gene expression in biphenyl degrading marine bacterium Pseudomonas aeruginosa JP-11, Chemosphere, 2016, vol. 144, pp. 1706–1714.

    Article  CAS  PubMed  Google Scholar 

  6. Egorova, D.O., Korsakova, E.S., Demakov, V.A., and Plotnikova, E.G., Degradation of aromatic hydrocarbons by the Rhodococcus wratislaviensis KT112-7 isolated from waste products of a salt-mining plant, Appl. Biochem. Microbiol., 2013, vol. 49, pp. 244–255.

    Article  CAS  Google Scholar 

  7. Fierer, N., Jackson, J.A, Vilgalys, R., and Jackson, R.B., Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays, Appl. Environ. Microbiol., 2005, vol. 71, pp. 4117–4120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fujihara, H., Yamazoe, A., Hosoyama, A., Suenaga, H., Kimura, N., Hirose, J., Watanabe, T., Futagami, T., Goto, M., and Furukawa, K., Draft genome sequence of Pseudomonas aeruginosa KF702 (NBRC 110665), a polychlorinated biphenyl-degrading bacterium isolated from biphenyl-contaminated soil, Genome Announc., 2015, vol. 3, no. 3, e00517-15.

    PubMed  PubMed Central  Google Scholar 

  9. Furukawa, K., Hayase, N., Taira, K., and Tomizuka, N., Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess a highly conserved bph operon, J. Bacteriol., 1989, vol. 171, pp. 5467‒5472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Furukawa, K., Suenaga, H., and Goto, M., Biphenyl dioxygenases: functional versatilities and directed evolution, J. Bacteriol., 2004, vol. 186, pp. 5189–5196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hatamian-Zarmi, A., Shojaosadati, S.A., Vasheghani-Farahani, E., Hosseinkhani, S., and Emamzadeh, A., Extensive biodegradation of highly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils, Int. Biodeterior. Biodegr., 2009, vol. 63, pp. 788‒794.

    Article  CAS  Google Scholar 

  12. Iwai, S., Chai, B., Sul, W.J., Cole, J.R., Hashsham, S.A., and Tiedje, J.M., Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment, ISME J., 2010, vol. 4, pp. 279–285.

    Article  CAS  PubMed  Google Scholar 

  13. Jurelevicius, D., Alvarez, V.M., Peixoto, R., Rosado, A.S., and Seldin, L., Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula, Appl. Soil Ecol., 2012, vol. 55, pp. 1‒9.

    Article  Google Scholar 

  14. Kahl, S. and Hofer, B., A genetic system for the rapid isolation of aromatic-ring-hydroxylating dioxygenase activities, Microbiology (UK), 2003, vol. 149, pp. 1475–1481.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, S.F. and Picardal, W., Microbial growth on dichlorobiphenyls chlorinated on both rings as a sole carbon and energy source, Appl. Environ. Microbiol., 2001, vol. 64, pp. 1953–1955.

    Article  Google Scholar 

  16. Kimura, N., Watanabe, T., Suenaga, H., Fujihara, H., Futagami, T., Goto, M., Hanada, S., and Hirose, J., Pseudomonas furukawaii sp. nov., a polychlorinated biphenyl-degrading bacterium isolated from biphenyl-contaminated soil in Japan, Int. J. Syst. Evol. Microbiol., 2018, vol. 68, pp. 1429‒1435.

    Article  CAS  PubMed  Google Scholar 

  17. Li Q., Wang X., Yin G., Gai Z., Tang H., Ma C., Deng Z., Xu P., New metabolites in dibenzofuran cometabolic degradation by a biphenyl-cultivated Pseudomonas putida strain B6-2, Environ. Sci. Technol., 2009, vol. 43, pp. 8635–8642.

    Article  CAS  PubMed  Google Scholar 

  18. Maltseva, O.V., Tsoi, T.V., Quensen, J.F., III, Fukuda, M., and Tiedje, J.M., Degradation of anaerobic reductive dechlorination products of Aroclor 1242 by aerobic bacteria, Biodegradation, 1999, vol. 10, pp. 363‒371.

    Article  CAS  PubMed  Google Scholar 

  19. Manual of Methods for General Bacteriology, Gerhardt, P., Murray, R.G.E., Costilow, R.N., Nester, E.W., Wood, W.A., Krieg, N.R., and Phillips, G.B., Eds., Washington: Amer. Soc. Microbiol., 1981 [Russ. Transl. Moscow: Mir, 1983].

    Google Scholar 

  20. Master, E.R. and Mohn, W.W., Induction of bphA, encoding biphenyl dioxygenase, in two polychlorinated biphenyl-degrading bacteria, psychrotolerant Pseudomonas strain Cam-1 and mesophilic Burkholderia strain LB400, Appl. Environ. Microbiol., 2001, vol. 67, pp. 2669‒2676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nam, I.-H., Chon, C.-M., Jung, K.-Y., and Kim, J.-G., Biodegradation of biphenyl and 2-chlorobiphenyl by a Pseudomonas sp. KM-04 isolated from PCBs-contaminated coal mine soil, Bull. Environ. Contam. Toxicol., 2014, vol. 93, pp. 89–94.

    Article  CAS  PubMed  Google Scholar 

  22. Pieper, D.H. and Seeger, M., Bacterial metabolism of polychlorinated biphenyls, J. Mol. Microbiol. Biotechnol., 2008, vol. 15, pp. 121–138.

    Article  CAS  PubMed  Google Scholar 

  23. Ridl, J., Suman, J., Fraraccio, S., Hradilova, M., Strejcek, M., Cajthaml, T., Zubrova, A., Macek, T., Strnad, H., and Uhlik, O., Complete genome sequence of Pseudomonas alcaliphila JAB1 (=DSM 26533), a versatile degrader of organic pollutants, Stand. Genomic Sci., 2018, vol. 13: 3.

  24. Rozanova, E.P. and Nazina, T.N., Hydrocarbon-oxidizing bacteria and their activity in oil pools, Microbiology (Moscow), 1982, vol. 51, pp. 287–293.

    Google Scholar 

  25. Sharma, J.K., Gautam, R.K., Nanekar, S.V., Weber, R., Singh, B.K., Singh, S.K., and Juwarkar, A.A., Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils, Environ. Sci. Pollut. Res., 2018, vol. 25, pp. 16355‒16375.

    Article  CAS  Google Scholar 

  26. Short Protocols in Molecular Biology, 3rd ed., Ausbel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K., Eds., New York: Wiley, 1995.

    Google Scholar 

  27. Shumkova, E.S., Egorova, D.O., Boronnikova, S.V., and Plotnikova, E.G., Polymorphism of the bphA genes in bacteria destructing biphenyl/chlorinated biphenils, Mol. Biol. (Moscow), 2015, vol. 49, pp. 569–580.

    Article  CAS  Google Scholar 

  28. Standfuss-Gabisch, C., Al-Halbouni, D., and Hofer, B., Characterization of biphenyl dioxygenase sequences and activities encoded by the metagenomes of highly polychlorobiphenyl contaminated soils, Appl. Environ. Microbiol., 2012, vol. 78, pp. 2706–2715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Suenaga, H., Fujihara, H., Kimura, N., Hirose, J., Watanabe, T., Futagami, T., Goto, M., Shimodaira, J., and Furukawa, K., Insights into the genomic plasticity of Pseudomonas putida KF715, a strain with unique biphenyl-utilizing activity and genome instability properties, Environ. Microbiol. Rep., 2017, vol. 9, pp. 589‒598.

    Article  CAS  PubMed  Google Scholar 

  30. Suenaga, H., Yamazoe, A., Hosoyama, A., Kimura, N., Hirose, J., Watanabe, T., Fujihara, H., Futagami, T., Goto, M., and Furukawa, K., Draft genome sequence of the polychlorinated biphenyl-degrading bacterium Pseudomonas putida KF703 (NBRC 110666) isolated from biphenyl-contaminated soil, Genome Announc., 2015, vol. 3, no. 2, e00142-15.

    PubMed  PubMed Central  Google Scholar 

  31. Vasil’ev, A.V., Methodological approaches to classification of cooling and lubricating fluids and assessment of their toxicological effect on humans and the biosphere, Izv. Samar. Nauch. Tsentr RAN, 2017, vol. 19, no. 5(2), pp. 235‒241.

  32. Vasilyeva, G.K. and Strijakova E.R., Bioremediation of soils and sediments contaminated by polychlorinated biphenyls, Microbiology (Moscow), 2007, vol. 76, pp. 639–653.

    Article  CAS  Google Scholar 

  33. Versalovic, J., Schneider, M., de Bruijn, F.J., and Lupski, J.R., Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction, Meth. Cell. Mol. Biol., 1994, vol. 5, pp. 25‒40.

    CAS  Google Scholar 

  34. Vezina, J., Barriault, D., and Sylvestre M., Diversity of the C-terminal portion of the biphenyl dioxygenase large subunit, J. Mol. Microbiol. Biotechnol., 2008, vol. 15, pp. 139–151.

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe, T., Yamazoe, A., Hosoyama, A., Fujihara, H., Suenaga, H., Hirose, J., Futagami, T., Goto, M., Kimura, N., and Furukawa, K., Draft genome sequence of Pseudomonas toyotomiensis KF710, a polychlorinated biphenyl-degrading bacterium isolated from biphenyl-contaminated soil, Genome Announc., 2015, vol. 3, no. 3, e00223-15.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was carried out as part of the government task (project no. 01201353249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Plotnikova.

Ethics declarations

Сonflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by A. Panyushkina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronina, A.O., Egorova, D.O., Korsakova, E.S. et al. Diversity of the bphA1 Genes in a Microbial Community from Anthropogenically Contaminated Soil and Isolation of New Pseudomonads Degrading Biphenyl/Chlorinated Biphenyls. Microbiology 88, 433–443 (2019). https://doi.org/10.1134/S0026261719030172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719030172

Keywords:

Navigation