Skip to main content
Log in

Selection of a Microbial Community in the Course of Formation of Acid Mine Drainage

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Changes in microbial community composition during formation of an acid mine drainage were studied on a model of two water reservoirs located in the Ozernoye open-cast mine for polymetallic ores in Eastern Siberia. The first reservoir, Bu-18, was filled with groundwater, had a neutral pH and low levels of sulfate and dissolved metal ions. The second reservoir, Bu-16, was an acid mine drainage (pH 2.85) filled with the water from Bu-18, which passed through rocks containing sulfide minerals. The Bu-16 water contained 1405 mg/L of sulfate, 164 mg/L of manganese, 78 mg/L of magnesium, and 26 mg/L of iron. Molecular analysis of the microbial communities of two reservoirs, carried out using high-throughput sequencing of the 16S rRNA gene fragments, showed that formation of the acid mine drainage was accompanied by a decrease in microbial diversity and by selection of several dominant taxonomic and functional groups. Chemolithoautotrophic iron- and sulfur-oxidizing bacteria of the genera Leptospirillum, Acidithiobacillus, Gallionella, Sulfuriferula, and Sulfobacillus constituted most of the prokaryotic community in Bu-16. Heterotrophic bacteria of the genera Ferrimicrobium and Metallibacterium, capable of reducing Fe(III) under anaerobic conditions, were present as minor components. Over 20% of the community were members of the Candidate Phyla Radiation group and of the candidate phylum Dependentiae (TM6), known for their parasitic or symbiotic lifestyle. These groups of bacteria were rarely found in acid mine drainage and only in minor quantities. Potential hosts of the Dependentiae, flagellates of the genus Spumella, were found among eukaryotes in Bu-16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Anderson, I., Chertkov, O., Chen, A., Saunders, E., Lapidus, A., Nolan, M., Lucas, S., Hammon, N., Deshpande, S., Cheng, J.F., Han, C., Tapia, R., Goodwin, L.A., Pitluck, S., Liolios, K., et al., Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NAL(T)), Stand. Genomic Sci. 2012, vol. 6 , no. 3, pp. 1‒13. https://doi.org/10.4056/sigs.2736042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baker, B.J. and Banfield, J.F., Microbial communities in acid mine drainage, FEMS Microbiol. Ecol., 2003, vol. 44, pp. 139–152.

    Article  CAS  PubMed  Google Scholar 

  3. Behnke, A., Engel, M., Christen, R., Nebel, M., Klein, R.R., and Stoeck, T., Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions, Environ. Microbiol., 2011, vol. 13, pp. 340–349.

    Article  CAS  PubMed  Google Scholar 

  4. Boenigk, J., Pfandl, K., Stadler, P., and Chatzinotas, A., High diversity of the “Spumella-like” flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions, Environ. Microbiol., 2005, vol. 7, pp. 685‒697.

    Article  CAS  PubMed  Google Scholar 

  5. Brown, C.T., Hug, L.A., Thomas, B.C., Sharon, I., Castelle, C.J., Singh, A., Wilkins, M.J., Wrighton, K.C., Williams, K.H., and Banfield, J.F., Unusual biology across a group comprising more than 15% of domain Bacteria, Nature, 2015, vol. 523, pp. 208‒211.

    Article  CAS  PubMed  Google Scholar 

  6. Bruneel, O., Duran, R., Casiot, C., Elbaz-Poulichet, F., and Personne, J.C., Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoules, France, Appl. Environ. Microbiol., 2006, vol. 72, pp. 551–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Castelle, C.J., Brown, C.T., Anantharaman, K., Probst, A.J., Huang, R.H., and Banfield, J.F., Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations, Nat. Rev. Microbiol., 2018, vol. 16, pp. 629‒645.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, L.X., Hu, M., Huang, L.N., Hua, Z.S., Kuang, J.L., Li, S.J., and Shu, W.S., Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage, ISME J., 2015, vol. 9, pp. 1579‒1592.

    Article  PubMed  Google Scholar 

  9. Edgar, R.C., Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 2010, vol. 26, pp. 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  10. Fabisch, M., Beulig, F., Akob, D.M., and Kusel, K., Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations, Front. Microbiol., 2013, vol. 4, p. 390.

    Article  PubMed  PubMed Central  Google Scholar 

  11. García-Moyano, A., Austnes, A.E., Lanzén, A., González-Toril, E., Aguilera, Á., and Øvreås, L., Novel and unexpected microbial diversity in acid mine drainage in Svalbard (78° N), revealed by culture-independent approaches, Microorganisms, 2015, vol. 3, pp. 667‒694.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hallberg, K.B., González-Toril, E., and Johnson, D.B., Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments, Extremophiles, 2010, vol. 14, pp. 9‒19.

    Article  CAS  PubMed  Google Scholar 

  13. He, Z., Xiao, S., Xie, X., Zhong, H., Hu, Y., Li, Q., Gao, F., Li, G., Liu, J., and Qiu, G., Molecular diversity of microbial community in acid mine drainages of Yunfu sulfide mine, Extremophiles, 2007, vol. 11, pp. 305–314.

    Article  CAS  PubMed  Google Scholar 

  14. Ishii, K., Fujitani, H., Soh, K., Nakagawa, T., Takahashi, R., and Tsuneda, S., Enrichment and physiological characterization of a cold-adapted nitrite-oxidizing Nitrotoga sp. from an eelgrass sediment, Appl. Environ. Microbiol., 2017, vol. 83. pii: e00549-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson, B.D. and Hallberg, K.B. The microbiology of acidic mine waters, Res. Microbiol., 2003, vol. 154, pp. 466‒473.

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, D.B., Bacelar-Nicolau, P., Okibe, N., Thomas, A., and Hallberg, K.B., Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 1082‒1089.

    Article  CAS  PubMed  Google Scholar 

  17. Kadnikov, V.V., Ivasenko, D.A., Beletsky, A.V., Mardanov, A.V., Danilova, E.V., Pimenov, N.V., Karnachuk, O.V., and Ravin, N.V., Effect of metal concentration on the microbial community in acid mine drainage of a polysulfide ore deposit, Microbiology (Moscow), 2016a, vol. 85, pp. 745–751. https://doi.org/10.1134/S0026261716060126

    Article  CAS  Google Scholar 

  18. Kadnikov, V.V., Ivasenko, D.A., Beletsky, A.V., Mardanov, A.V., Danilova, E.V., Pimenov, N.V., Karnachuk, O.V., and Ravin, N.V., A novel uncultured bacterium of the family Gallionellaceae: description and genome reconstruction based on metagenomic analysis of microbial community in acid mine drainage, Microbiology (Moscow), 2016b, vol. 85, no. 4, pp. 449–461. https://doi.org/10.1134/S002626171604010X

    Article  CAS  Google Scholar 

  19. Kimura, S., Bryan, C.G., Hallberg, K.B., and Johnson, D.B., Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy, Environ. Microbiol., 2011, vol. 13, pp. 2092–2104.

    Article  CAS  PubMed  Google Scholar 

  20. Kupka, D., Rzhepishevska, O.I., Dopson, M., Lindström, E.B., Karnachuk, O.V., and Tuovinen, O.H., Bacterial oxidation of ferrous sulfate at low temperatures, Biotechnol. Bioeng., 2007, vol. 97, pp. 1470‒1478.

    Article  CAS  PubMed  Google Scholar 

  21. Liljeqvist, M., Valdes, J., Holmes, D.S., and Dopson, M., Draft genome of the psychrotolerant acidophile Acidithiobacillus ferrivorans SS3, J. Bacteriol., 2011, vol. 193, pp. 4304–4305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Magoč, T. and Salzberg, S.L., FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics, 2011, vol. 27, pp. 2957‒2963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Méndez-García, C., Peláez, A.I., Mesa, V., Sánchez, J., Golyshina, O.V., and Ferrer, M., Microbial diversity and metabolic networks in acid mine drainage habitats, Front. Microbiol., 2015, vol. 29, no. 6, p. 475.

    Google Scholar 

  24. Pruesse, E., Peplies, J., and Glöckner, F.O., SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes, Bioinformatics, 2012, vol. 28, pp. 1823–1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ram, R.J., Verberkmoes, N.C., Thelen, M.P., Tyson, G.W., Baker, B.J., Blake, R.C. 2nd, Shah, M., Hettich, R.L., and Banfield, J.F., Community proteomics of a natural microbial biofilm, Science, 2005, vol. 308, pp. 1915‒1920.

    Article  CAS  PubMed  Google Scholar 

  26. Rohwerder, T., Gehrke, T., Kinzler, K., and Sand, W., Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation, Appl. Microbiol. Biotechnol., 2003, vol. 63, pp. 239‒248.

    Article  CAS  PubMed  Google Scholar 

  27. Schramm, A., De Beer, D., Wagner, M., and Amann, R., Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor, Appl. Environ. Microbiol., 1998, vol. 64, pp. 3480‒3485.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., and Weber, C.F., Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 2009, vol. 75, pp. 7537–7541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tyson, G.W., Chapman, J., Hugenholtz, P., Allen, E.E., Ram, R.J., Richardson, P.M., Solovyev, V.V., Rubin, E.M., Rokhsar, D.S., and Banfield, J.F., Community structure and metabolism through reconstruction of microbial genomes from the environment, Nature, 2004, vol. 428, no.  6978, pp. 37–43.

    Article  CAS  PubMed  Google Scholar 

  30. Watanabe, T., Kojima, H., and Fukui, M., Sulfuriferula multivorans gen. nov., sp. nov., isolated from a freshwater lake, reclassification of “Thiobacillus plumbophilus” as Sulfuriferula plumbophilus sp. nov., and description of Sulfuricellaceae fam. nov. and Sulfuricellales ord. nov., Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 1504‒1508.

    Article  CAS  PubMed  Google Scholar 

  31. Yeoh, Y.K., Sekiguchi, Y., Parks, D.H., and Hugenholtz, P., Comparative genomics of candidate phylum TM6 suggests that parasitism is widespread and ancestral in this lineage, Mol. Biol. Evol., 2016, vol. 33, pp. 915‒927.

    Article  CAS  PubMed  Google Scholar 

  32. Ziegler, S., Waidner, B., Itoh, T., Schumann, P., Spring, S., and Gescher, J., Metallibacterium scheffleri gen. nov., sp. nov., an alkalinizing gammaproteobacterium isolated from an acidic biofilm, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, pp. 1499‒1504.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the scientific equipment of the Core Research Facility “Bioengineering.”

Funding

The work was supported by the Russian Science Foundation (project no. 14-14-01016, analysis of prokaryotes) and by the Russian Foundation for Basic Research (project no. 18-34-00356, analysis of eukaryotes). Sampling and physicochemical analysis of acid mine drainage samples were supported by the Russian Foundation for Basic Research, project no. 16-54-150011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ravin.

Ethics declarations

Statement of the welfare of animals. This article does not contain any research using animals as objects.

Conflict of interest. The authors declare that there is no conflict of interest.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadnikov, V.V., Gruzdev, E.V., Ivasenko, D.A. et al. Selection of a Microbial Community in the Course of Formation of Acid Mine Drainage. Microbiology 88, 292–299 (2019). https://doi.org/10.1134/S0026261719030056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719030056

Keywords:

Navigation