Skip to main content
Log in

Dairy biofilm: Bacterial community diversity assessment and impact of the Lactococcus lactis bio adhesion on biofilm growth

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Biofilms are the most common mode of bacterial growth in nature. Their formation occurs on organic or inorganic solid surfaces in contact with a liquid, on gas-liquid and liquid-liquid boundaries as well. The aims of this study were, by combining cell enumeration, scanning electron microscopy and denaturing gel gradient electrophoresis (DGGE), to characterize the structural dynamics of dairy biofilm growth in the environments with a nutrient flow, and to evaluate the impact of adhesion of Lactococcus lactis on the biofilm community depending on the incubation time. Significantly higher values of biofilm volume and thickness were observed under dynamic conditions after 55 h. The populations of gram-positive bacteria and fungi exhibited a significantly higher biofilm organization after 2 days of cultivation than that of gram-negative bacteria. Also, results showed that Lc. lactis was able to adhere to silicone surface and the produced biofilm in which the number of adhered gram-positive and gram-negative bacteria decreased by nine orders of magnitude after 48 h of contact. This study constitutes a step ahead in developing the strategies to prevent microbial colonization by lactococcal protective biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Toole, G., Kaplan, H.B., and Kolter, R., Biofilm formation as microbial development, Annu. Rev. Microbiol., 2000, vol. 54, pp. 49–79.

    Article  PubMed  Google Scholar 

  2. Bower, C.K., McGuire, J., and Daeschel, M.A., The adhesion and detachment of bacteria and spores on food-contact surfaces, Trends Food Sci. Technol., 1996, vol. 71, pp. 152–157.

    Article  Google Scholar 

  3. Bore, E. and Langsrud, S., Characterization of microorganisms isolated from dairy industry after cleaning and fogging disinfection with alkyl amine and peracetic acid, J. Appl. Microbiol., 2005, vol. 98, pp. 96–105.

    Article  PubMed  CAS  Google Scholar 

  4. Zhao, Q., Wang, C., Liu, Y., and Wang, S., Bacterial adhesion on the metal polymer composite coatings, Int. J. Adhes., 2007, vol. 27, pp. 85–91.

    Article  Google Scholar 

  5. Rodrigues, L., van der Mei, H., Teixeira, J., and Oliveira, R., Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber, Appl. Microbiol. Biotechnol., 2004, vol. 66, pp. 306–311.

    Article  PubMed  CAS  Google Scholar 

  6. Ren, T.J. and Frank, J.F., Susceptibility of starved planktonic and biofilm Listeria monocytogenes to quaternary ammonium sanitizer as determined by direct viable and agar plate counts, J. Food Prot., 1993, vol. 56, pp. 573–576.

    CAS  Google Scholar 

  7. Rieu, A., Briandet, R., Habimana, O., Garmyn, D., Guzzo, J., and Piveteau, P., Listeria monocytogenes EGD-e Biofilms: no mushrooms but a network of knitted chains, J. Appl. Microbiol., 2008, vol. 74, pp. 4491–4497.

    Article  CAS  Google Scholar 

  8. García-Almendárez, B.E., Cann, I.K.O., Martin, S.E., Guerrero-Legarreta, I., and Regalado, C., Effect of Lactococcus lactis UQ2 and its bacteriocin on Listeria monocytogenes biofilms, Food Control., 2008, vol. 19, pp. 670–680.

    Article  Google Scholar 

  9. Cherif, H., Ouzari, H., Marzorati, M., Brusetti, L., Jedidi, N., Hassen, A., and Daffonchio, D., Bacterial community diversity assessment in municipal solid waste compost amended soil using DGGE and ARISA fingerprinting methods, World J. Microbiol. Biotechnol., 2007, doi:10 1007/s11274-007-9588-z

    Google Scholar 

  10. Bo, F., Xiaoyi, L., Lili, D., Ke, X., and Hongqiang R., Microbial morphology and community structure in suspended carrier biofilm reactor as a function of substrate loading rates, Afr. J. Microbiol. Res., 2010, vol. 4, pp. 2235–2242.

    Google Scholar 

  11. El Abed, S., Ibnsouda Koraichi, S., Meftah, H., Tahri Joutey, N., Hamadi, F., and Latrache, H., Study of microbial adhesion on some wood species: theoretical prediction 1, Microbiology (UK), 2011, vol. 80, pp. 43–49.

    Article  Google Scholar 

  12. Bos, R., Van Der Mei, H.C., and Busscher, H.J., Physico-chemistry of initial microbial adhesive interactions-its mechanisms and methods for study, FEMS Microbiol. Rev., 1999, vol. 23, pp. 79–230.

    Google Scholar 

  13. Briandet, R., Herry J., and Bellon-Fontaine M., Determination of the van der Waals, electron donor and electron acceptor surface tension components of static gram-positive microbial biofilms, Colloids Surf. B. Biointerfaces, 2001, vol. 21, pp. 299–310.

    Article  PubMed  CAS  Google Scholar 

  14. Leriche, V., Chassaing, D., and Carpentier, B., Behaviour of L. monocytogenes in an artificially made biofilm of a nisinproducing strain of Lactococcus lactis, Int. J. Food Microbiol., 1999, vol. 51, pp. 169–182.

    Article  PubMed  CAS  Google Scholar 

  15. Guerrieri, E., De Niederhäusern, S., Messi, P., Sabia, C., Iseppi, R., Anacarso, I., and Bondi, M., Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes in a small-scale model, Food Control., 2009, vol. 20, pp. 861–865.

    Article  CAS  Google Scholar 

  16. Rossland, E., Langsrud, T., Granum, P.E., and Sbrhaug, T., Production of antimicrobial metabolites by strains of Lactobacillus or Lactococcus co-cultured with Bacillus cereus in milk, Int. J. Food Microbiol., 2005, vol. 98, pp. 193–200.

    Article  PubMed  CAS  Google Scholar 

  17. Terzaghi, B.E. and Sandine, W.E., Improved medium for lactic streptococci and their bacteriophages, Appl. Microbiol., 1975, vol. 29, pp. 807–813.

    PubMed  CAS  Google Scholar 

  18. Oliveira, R., Azeredo, J., Teixeira, P., and Fonseca, A.P., The role of hydrophobicity in bacterial adhesion, in Biofilm Community Interactions: Chance or Necessity?, Gilbert, P., Allison, D., Brading, M., Verran, J., and Walker, J., Eds., Cardiff: Bioline, 2001, pp. 11–22.

    Google Scholar 

  19. Lawrence, J.R., Delaquis, P.J., Korber, D.R., and Caldwell, D.E., Behaviour of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments, Microb. Ecol., 1987, vol. 14, pp. 1–14.

    Article  CAS  Google Scholar 

  20. Zottola, E.A. and Sasahara, K.C., Microbial biofilms in the food processing industry: should they be a concern? Int. J. Food Microbiol., 1994, vol. 23, pp. 125–148.

    Article  PubMed  CAS  Google Scholar 

  21. Van Loosdrecht, M.C.M., Lyklema, J., Norde, W., Schraa, G., and Zehnder, A.J.B., Bacterial adhesion: a physicochemical approach, Microb. Ecol., 1990, vol. 17, pp. 1–15.

    Article  Google Scholar 

  22. Busscher, H.J. and Van der Mei, H.C., Microbial adhesion in flow displacement systems, Clin. Microbiol., 2006, pp. 127–141.

    Google Scholar 

  23. Raats, D., Offek, M., Minz, D., and Halpern, M., Molecular analysis of bacterial communities in raw cow milk and the impact of refrigeration on its structure and dynamics, Food Microbiol., 2011, vol. 28, pp. 465–471.

    Article  PubMed  CAS  Google Scholar 

  24. Bremer, P.J., Fillery, S., and McQuillan, A.J., Laboratory scale clean-in-place studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms, Int. J. Food Microbiol., 2006, vol. 106, pp. 254–262.

    Article  PubMed  CAS  Google Scholar 

  25. Sousa, C. and Oliveira, R., Infuence of surface properties on the adhesion of Staphylococcus epidermidis to acrylic and silicone, Int. J. Biomat., 2009, ID 718017, 9 pages, doi:10.1155/2009/718017

    Google Scholar 

  26. Fadda, M.E., Viale, S., Deplano, M., Pisano, M.B., and Cosentino, S., Characterization of yeast population and molecular fingerprinting of Candida zeylanoides isolated from goat’s milk collected in sardinia, Int. J. Food Microbiol., 2010, vol. 136, pp. 376–380.

    Article  PubMed  CAS  Google Scholar 

  27. Mahdavi, M., Jalali, M., and Kasra, R., Biofilm formation by Salmonella enteritidis on food contact surfaces, J. Biol. Sci., 2008, vol. 8, pp. 502–505.

    Article  Google Scholar 

  28. Habimana O., Le Goff, V., Juillard, M.N., Bellon-Fontaine, G., Buist, S., Kulakauskas, R., and Briandet, R., Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci, BMC Microbiol., 2007, vol. 7, no. 36. doi:10 1186/1471-2180-7-36

    Google Scholar 

  29. Walter, M., Tannock, G.W., Tilsala-Timisjarvi, A., Rodtong, S., Loach, D.M., Munro, K., and Alatossava, T., Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers, Appl. Environ. Microbiol., 2000, vol. 66, pp. 297–303.

    Article  PubMed  CAS  Google Scholar 

  30. Spencer, P.J., Greenman, C., McKenzie, G., Gafan, D., Spratt, A., and Flanagan, E., In vitro biofilm model for studying tongue flora and malodour, J. Appl. Microbiol., 2007, vol.103, pp. 985–992.

    Article  PubMed  CAS  Google Scholar 

  31. Mc Bain, A.J., Bartolo, R.G., Catrenich, C.E., Charbonneau, D., Ledder, R.G., and Gilbert, P., Growth and molecular characterization of dental plaque microcosms, J. Appl. Microbiol., 2003, vol. 94, pp. 655–664.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hamdi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ksontini, H., Kachouri, F., Guesmi, A. et al. Dairy biofilm: Bacterial community diversity assessment and impact of the Lactococcus lactis bio adhesion on biofilm growth. Microbiology 82, 364–372 (2013). https://doi.org/10.1134/S002626171303017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626171303017X

Keywords

Navigation