Skip to main content
Log in

Molecular identification of filterable bacteria and archaea in the water of acidic lakes of northern Russia

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Wetland ecosystems are the natural centers of freshwater formation in northern Russia lowland landscapes. The humic acidic waters formed in bogs feed the numerous lakes of the northern regions. One milliliter of the water in these lakes contains up to 104 ultrasmall microbial cells that pass through “bacterial” filters with a pore size of 0.22 μm. The vast majority of these cells do not grow on nutrient media and cannot be identified by routine cultivation-based approaches. Their identification was performed by analysis of clone libraries obtained by PCR amplification of archaeal and bacterial 16S rRNA genes from the fraction of cells collected from water filtrates of acidic lakes. Most of the obtained bacterial 16S rRNA gene sequences represented the class Betaproteobacteria and exhibited the highest homology of (94–99%) with 16S rRNA genes of representatives of the genera Herbaspirillum, Herminiimonas, Curvibacter, and Burkholderia. The archaeal 16S rRNA gene clone library comprised genes of Euryarchaeota representatives. One-third of these genes exhibited 97–99% homology to the 16S rRNA genes of taxonomically described organisms of the orders Methanobacteriales and Methanosarcinales. The rest of the cloned archaeal 16S rRNA genes were only distantly related (71–74% homology) to those in all earlier characterized archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kulichevskaya, I.S., Belova, S.E., Komov, V.T., Dedysh, S.N., and Zavarzin, G.A., Phylogenetic Composition of Bacterial Communities in Small Boreal Lakes and Ombrotrophic Bogs of the Upper Volga Basin, Microbiology, 2011, vol. 80, no. 4, pp. 549–558.

    Article  CAS  Google Scholar 

  2. Torella, F. and Morita, R., Microcultural Study of Bacterial Size Changes and Microcolony and Ultramicrocolony Formation by Heterotrophic Bacteria in Seawater, Appl. Environ. Microbiol., 1981, vol. 41, pp. 518–527.

    Google Scholar 

  3. MacDonell, M.T. and Hood, M.A., Isolation and Characterization of Ultramicrobacteria from a Gulf Coast Estuary, Appl. Environ. Microbiol., 1982, vol. 43, pp. 566–571.

    PubMed  CAS  Google Scholar 

  4. Velimirov, B., Nanobacteria, Ultramicrobacteria and Starvation Forms: A Search for the Smallest Metabolizing Bacterium, Microbes Environ., 2001, vol. 16, no. 2, pp. 67–77.

    Article  Google Scholar 

  5. Schut, F., Prins, R., and Gottschal, J., Oligotrophy and Pelagic Marine Bacteria: Facts and Fiction, Aquat. Microb. Ecol., 1997, vol. 12, pp. 177–202.

    Article  Google Scholar 

  6. Hahn, M.W., Broad Diversity of Viable Bacteria in ’sterile’ (0.2 μm) Filtered Water, Res. Microbiol., 2004, vol. 155, pp. 688–691.

    Article  PubMed  Google Scholar 

  7. Miteva, V.I. and Brenchley, J.E., Detection and Isolation of Ultrasmall Microorganisms from a 120000-Year-Old Greenland Glacier Ice Core, Appl. Environ. Microbiol., 2005, vol. 71, pp. 7806–7818.

    Article  PubMed  CAS  Google Scholar 

  8. Haller, C.M., Rölleke, S., Vybiral, D., Witte, A., and Velimirov, B., Investigation of 0.2 μm Filterable Bacteria from the Western Mediterranean Sea Using a Molecular Approach: Dominance of Potential Starvation Forms, FEMS Microbiol. Ecol., 1999, vol. 31, pp. 153–161.

    Google Scholar 

  9. Miyoshi, T., Iwatsuki, T., and Naganuma, T., Phylogenetic Characterization of 16S rRNA Gene Clones from Deep-Groundwater Microorganisms that Pass through 0.2-Micrometer-Pore-Size Filters, Appl. Environ. Microbiol., 2005, vol. 71, pp. 1084–1088.

    Article  PubMed  CAS  Google Scholar 

  10. Panikov, N.S., Contribution of Nanosized Bacteria to the Total Biomass and Activity of a Soil Microbial Community, Adv. Appl. Microbiol., 2005, vol. 57, pp. 243–296.

    Google Scholar 

  11. Wang, Y., Hammes, F., Boon, N., and Egli, T., Quantification of the Filterability of Freshwater Bacteria through 0.45, 0.22, and 0.1 μm Pore Size Filters and Shape-Dependent Enrichment of Filterable Bacterial Communities, Environ. Sci. Technol., 2007, vol. 41, pp. 7080–7086.

    Article  PubMed  CAS  Google Scholar 

  12. Lazareva, V.I. and Komov, V.T., Geosystems of Drainage Areas and Formation of the Chemical Composition of Small Wetland Lakes Affected by Acidification, Vodn. Resur., 1998, vol. 25, no. 6, pp. 683–693.

    Google Scholar 

  13. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., 16S Ribosomal DNA Amplification for Phylogenetic Study, J. Bacteriol., 1991, vol. 173, pp. 697–703.

    PubMed  CAS  Google Scholar 

  14. Groβkopf, R., Janssen, P.H., and Liesack, W., Diversity and Structure of the Methanogenic Community in Anoxic Rice Paddy Soil Microcosms as Examined by Cultivation and Direct 16S rRNA Gene Sequence Retrieval, Appl. Environ. Microbiol., 1998, vol. 64, pp. 960–969.

    Google Scholar 

  15. Vardhan Reddy, P.V., Shiva Nageswara Rao, S.S., Pratibha, M.S., Sailaja, B., Kavya, B., Manorama, R.R., Singh, S.M., Radha Srinivas, T.N., and Shivaji, S., Bacterial Diversity and Bioprospecting for Cold-Active Enzymes from Culturable Bacteria Associated with Sediment from a Melt Water Stream of Midtre Lovenbreen Glacier, an Arctic Glacier, Res. Microbiol., 2009, vol. 160, pp. 538–546.

    Article  PubMed  Google Scholar 

  16. Sait, M., Hugenholtz, P., and Janssen, P.H., Cultivation of Globally Distributed Soil Bacteria from Phylogenetic Lineages Previously Only Detected in Cultivation-Independent Surveys, Environ. Microbiol, 2002, vol. 4, pp. 654–666.

    Article  PubMed  CAS  Google Scholar 

  17. Jezbera, J., Sharma, A.K., Brandt, U., Doolittle, W.F., and Hahn, M.W., ’Candidatus Planktophila limnetica,’ an Actinobacterium Representing One of the Most Numerically Important Taxa in Freshwater Bacterioplankton, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 2864–2869.

    Article  PubMed  CAS  Google Scholar 

  18. Metje, M. and Frenzel, P., Effect of Temperature on Anaerobic Ethanol Oxidation and Methanogenesis in Acidic Peat from a Northern Wetland, Appl. Environ. Microbiol., 2005, vol. 71, pp. 8191–8200.

    Article  PubMed  CAS  Google Scholar 

  19. Cadillo-Quiroz, H., Yashiro, E., Yavitt, J.B., and Zinde, S.H., Characterization of the Archaeal Community in a Minerotrophic Fen and Terminal Restriction Fragment Length Polymorphism-Directed Isolation of a Novel Hydrogenotrophic Methanogen, Appl. Environ. Microbiol., 2008, vol. 74, pp. 2059–2068.

    Article  PubMed  CAS  Google Scholar 

  20. Metje, M. and Frenzel, P., Methanogenesis and Methanogenic Pathways in a Peat from Subarctic Permafrost, Environ. Microbiol., 2007, vol. 9, pp. 954–964.

    Article  PubMed  CAS  Google Scholar 

  21. Glissman, K., Chin, K.-J., Casper, P., and Conrad, R., Methanogenic Pathway and Archaeal Community Structure in the Sediment of Eutrophic Lake Dagow: Effect of Temperature, FEMS Microb. Ecol., 2004, vol. 48, pp. 389–399.

    CAS  Google Scholar 

  22. Galand, P.E., Lovejoy, C., and Vincent, W.F., Remarkably Diverse and Contrasting Archaeal Communities in a Large Arctic River and the Coastal Arctic Ocean, Aquat. Microb. Ecol., 2006, vol. 44, pp. 115–126.

    Article  Google Scholar 

  23. Galand, P.E., Lovejoy, C., Pouliot, J., Garneau, M.E., and Vincent, W.F., Microbial Community Diversity and Heterotrophic Production in a Coastal Arctic Ecosystem: a Stamukhi Lake and Its Source Waters, Limnol. Oceanogr., 2008, vol. 53, pp. 813–823.

    Article  Google Scholar 

  24. Galand, P.E., Lovejoy, C., Pouliot, J., and Vincent, W.F., Heterogeneous Archaeal Communities in the Particle-Rich Environment of an Arctic Shelf Ecosystem, J. Marine Syst., 2008, vol. 74, pp. 774–782.

    Article  Google Scholar 

  25. Pouliot, J., Galand, P.E., Lovejoy, C., and Vincent, W.F., Vertical Structure of Archaeal Communities and the Distribution of Ammonia Monooxygenase A Gene Variants in Two Meromictic High Arctic Lakes, Environ. Microbiol., 2009, vol. 11, pp. 687–699.

    Article  PubMed  CAS  Google Scholar 

  26. Audic, S., Robert, C., Campagna, B., Parinello, H., Claveri, J.M., Raoult, D., and Drancourt, M., Genome Analysis of Minibacterium massiliensis Highlights the Convergent Evolution of Water-Living Bacteria, PLoS Genet., 2007, vol. 3, pp. 1454–1463.

    Article  CAS  Google Scholar 

  27. Loveland-Kurtze, J., Miteva, V.I., and Brencheley, J.E., Herminiimonas glaciei sp. nov., a Novel Ultramicrobacterium from 3042 m Deep Greenland Glacial Ice, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 1272–1277.

    Article  Google Scholar 

  28. Wang, Y., Hammes, F., Boon, N., Chami, M., and Egli, T., Isolation and Characterization of Low Nucleic Acid (LNA)-Content Bacteria, ISME J., 2009, vol. 3, pp. 889–902.

    Article  PubMed  CAS  Google Scholar 

  29. Valverde, A., Valázquez, E., Gutiérrez, C., Cervantes, E., Ventosa, A., and Igual, J.-M., Herbaspirillum lusitanum sp. nov., a Novel Nitrogen-Fixing Bacterium Associated with Root Nodules of Phaseolus vulgaris, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1979–1983.

    Article  PubMed  CAS  Google Scholar 

  30. Ding, L. and Yokota, A., Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for Bacterial Strains Isolated from Well Water and Reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicates comb. nov. and Herbaspirillum autotrophicum comb. nov., Int. J. Syst. Evol. Microbiol., 2009, vol. 54, pp. 2223–2230.

    Article  Google Scholar 

  31. Lilliis, T.O. and Bissonnette, G.K., Detection and Characterization of Filterable Heterotrophic Bacteria from Rural Groundwater Supplies, Lett. Appl. Microbiol., 2001, vol. 32, pp. 268–272.

    Article  Google Scholar 

  32. Hahn, M.W., Luensdorf, H., Wu, Q., Schauer, M., Hoefle, M.G., Boenigk, J., and Stadler, P., Isolation of Novel Ultramicrobacteria Classified as Actinobacteria from Five Freshwater Habitats in Europe and Asia, Appl. Environ. Microbiol., 2003, vol. 69, pp. 1442–1451.

    Article  PubMed  CAS  Google Scholar 

  33. Hahn, M.W., Description of Seven Candidate Species Affiliated with the Phylum Actinobacteria, Representing Planktonic Freshwater Bacteria, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 112–117.

    Article  PubMed  CAS  Google Scholar 

  34. Dojka, M.A., Hugenholtz, P., Haack, S.K., and Pace, N.R., Microbial Diversity in a Hydrocarbon- and Chlorinated-Solvent-Contaminated Aquifer Undergoing Intrinsic Bioremediation, Appl. Environ. Microbiol., 1999, vol. 64, pp. 3869–3877.

    Google Scholar 

  35. Takai, K. and Horikoshi, K., Genetic Diversity of Archaea in Deep-Sea Hydrothermal Vent Environments, Genetics, 1999, vol. 152, pp. 1285–1297.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Dedysh.

Additional information

Original Russian Text © A.V. Fedotova, S.E. Belova, I.S. Kulichevskaya, S.N. Dedysh, 2012, published in Mikrobiologiya, 2012, Vol. 81, No. 3, pp. 306–313.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedotova, A.V., Belova, S.E., Kulichevskaya, I.S. et al. Molecular identification of filterable bacteria and archaea in the water of acidic lakes of northern Russia. Microbiology 81, 281–287 (2012). https://doi.org/10.1134/S002626171203006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626171203006X

Keywords

Navigation