Skip to main content
Log in

Intraspecies diversity of dormant forms of Mycobacterium smegmatis

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The non-spore-forming gram-positive bacterium Mycobacterium smegmatis mc2 155, related to M. tuberculosis, was revealed to be capable of forming different types of dormant forms (DFs) during the life cycle of its cultures. The relationship between the intraspecies diversity of DFs and the cultivation conditions of the mycobacterium was established. The DFs possessed the following common properties: (i) maintenance of viability for a long period of time (5 months), (ii) resistance to deleterious factors such as heat treatment, and (iii) morphological and ultrastructural peculiarities that distinguish DFs from vegetative cells. The diversity of M. smegmatis DFs manifested itself in differences in terms of structural organization, conditions required for growth renewal, and capacity to produce antibiotic-resistant variants upon germination on selective media. Well-differentiated cystlike dormant cells (CDCs) were formed in the cultures grown in synthetic SR1 medium with fivefold-decreased nitrogen content. The structural organization of CDCs differed from that of other DF types mainly in the presence of club-shaped cells, thickened lamellar cell walls, coarse cytoplasm texture, and large electron-transparent triacylglyceride inclusion bodies. It was possible to use mycobacterial CDCs as a source of PCR-competent DNA. CDC populations were heterogeneous in cell buoyant density, and the individual fractions, which we isolated, were found to differ in thermal stability and the ability to revert to growth under standard conditions. Coccoid DFs, which retained their colony-forming capacity for a long time but were less heat-resistant than the CDCs, were formed by mycobacteria grown in standard Sauton’s medium with initial pH value decreased to 6.2. Poorly differentiated DFs resulted from growing mycobacterial cultures in Sauton’s medium with a fivefold-decreased phosphorus content. Upon germination of various DF types, the variants resistant to kanamycin (200 μg/ml) and tetracycline (20 μg/ml) were obtained. CDC suspensions incubated for 5 months demonstrated the highest percentage (1.5%) of antibiotic-resistant clones. The data obtained on the DF diversity of M. smegmatis, a fast-growing relative of M. tuberculosis, contribute to our understanding of the flexibility of the survival strategy of this bacterium in nature and in the host organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wayne, L.G., Dormancy of Mycobacterium tuberculosis and Latency of Disease, Eur. J. Clin. Microbiol. Infect. Dis., 1994, vol. 13, no. 11, pp. 908–914.

    Article  CAS  PubMed  Google Scholar 

  2. Gangadharam, P., Mycobacterial Dormancy, Tub. Lung Dis., 1995, vol. 76, pp. 477–479.

    Article  CAS  Google Scholar 

  3. Cunningham, A.F. and Spreadbury, C.L., Mycobacterial Stationary Phase Induced by Low Oxygen Tension: Cell Wall Thickening and Localization of the 16-Kilodalton α-Crystallin Homolog, J. Bacteriol., 1998, vol. 180, pp. 801–808.

    CAS  PubMed  Google Scholar 

  4. Zhang, Y., Persistent and Dormant Tubercle Bacilli and Latent Tuberculosis, Frontiers in Bioscience, 2004, vol. 9, pp. 1136–1156.

    Article  CAS  PubMed  Google Scholar 

  5. Wayne, L.G. and Hayes, L.G., An in vitro Model for Sequential Study of Shiftdown of Mycobacterium tuberculosis through Two Stages of Nonreplicating Persistence, Infect. Immun., 1996, vol. 64, pp. 2062–2069.

    CAS  PubMed  Google Scholar 

  6. Shleeva, M.O., Bagramyan, K., Telkov, M.V., Mukamolova, G.V., Young, M., Kell, D.B., and Kaprelyants, A.S., Formation and Resuscitation of ‘Non-Culturable’ Cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in Prolonged Stationary Phase, Microbiology (UK), 2002, vol. 148, pp. 1581–1591.

    CAS  PubMed  Google Scholar 

  7. Dick, T., Lee, B.H., and Murugasu-Oei, B., Oxygen Depletion Induced Dormancy in Mycobacterium smegmatis, FEMS Microbiol Lett, 1998, vol. 163, pp. 159–163.

    Article  CAS  PubMed  Google Scholar 

  8. Smeulders, M.J., Keer, J., Speight, R.A., and Williams, H.D., Adaptation of Mycobacterium smegmatis to Stationary Phase, J. Bacteriol., 1999, vol. 181, no. 1, pp. 270–283.

    CAS  PubMed  Google Scholar 

  9. Shleeva, M., Mukamolova, G.V., Young, M., Williams, H.D., and Kaprelyants, A.S., Formation of ‘Non-Culturable’ Cells of Mycobacterium smegmatis in Stationary Phase in Response to Growth under Suboptimal Conditions and Their Rpf-Mediated Resuscitation, Microbiology (UK), 2004, vol. 150, no. 6, pp. 1687–1697.

    Article  CAS  Google Scholar 

  10. El’-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Suzina, N.E., Gal’chenko, V.F., and Duda, V.I., Adaptogenic Functions of Extracellular Autoregulators of Microorganisms, Mikrobiologiya, 2006, vol. 75, no. 4, pp. 446–456 [Microbiology (Engl. Transl.), vol. 75, no. 4, pp. 380–389].

    Google Scholar 

  11. Mulyukin, A.L., Lusta, K.A., Gryaznova, M.N., Kozlova, A.N., Duzha, M.V., Duda, V.I., and El’-Registan, G.I., Formation of Resting Cells by Bacillus cereus and Micrococcus luteus, Mikrobiologiya, 1996, vol. 65, no. 6, pp. 782–789 [Microbiology (Engl. Transl.), vol. 65, no. 6, pp. 683–689].

    CAS  Google Scholar 

  12. Suzina, N.E., Mulyukin, A.L., Kozlova, A.N., Shorokhova, A.P., Dmitriev, V.V., Barinova, E.S., Mokhova, O.N., El’-Registan, G.I., and Duda, V.I., Ultrastructure of Resting Cells of Some Non-Spore-Forming Bacteria, Mikrobiologiya, 2004, vol. 73, no. 4, pp. 516–529 [Microbiology (Engl. Transl.), vol. 73, no. 4, pp. 435–447].

    CAS  Google Scholar 

  13. Soina, V.S., Mulyukin, A.L., Demkina, E.V., Vorobyova, E.A., and El-Registan, G.I., The Structure of Resting Bacterial Populations in Soil and Subsoil Permafrost, Astrobiology, 2004, vol. 4, no. 3, pp. 345–358.

    Article  PubMed  Google Scholar 

  14. Krasil’nikov, N.A., Aktinomitsety-antagonisty i antibioticheskie veshchestva (Antagonistic Actinomycetes and Antimicrobial Compounds), Moscow: Akad. Nauk SSSR, 1950.

    Google Scholar 

  15. Danilevich, V.N. and Grishin, E.V., A New Approach to the Isolation of Genomic DNA from Yeast and Fungi: Preparation of DNA-containing Cell Envelopes and Their Use in PCR, Bioorg. Khim., 2002, vol. 28, no. 2, pp. 156–167 [Russ. J. Bioorg. Chem. (Engl. Transl.), vol. 28, no. 2, pp. 136–146].

    CAS  PubMed  Google Scholar 

  16. Danilevich, V.N., Duda, V.I., Suzina, N.E., and Grishin, E.V., Obtaining and Characterization of DNA-Containing Micromummies of Yeasts and gram-Positive Bacteria with Enhanced Cell Wall Permeability: Application in PCR, Mikrobiologiya, 2007, vol. 76, no. 1, pp. 72–82 [Microbiology (Engl. Transl.), vol. 76, no. 1, pp. 60–69].

    CAS  Google Scholar 

  17. Picard, C., Ponsonnet, C., Paget, E., Nesme, X., and Simonet, P., Detection and Enumeration of Bacteria in Soil by Direct DNA Extraction and Polymerase Chain Reaction, Appl. Environ. Microbiol., 1992, vol. 58, no. 9, pp. 2717–2722.

    CAS  PubMed  Google Scholar 

  18. Lara-Reyna, J., Olalda-Portugal, V., and Olmedo-Alvarez, G., An Efficient Procedure for the Isolation of PCR-Competent DNA from Bacillus Endospores Germinated in Soil, J. Microbiol. Biotechnol., 2000, vol. 16, pp. 345–351.

    Article  CAS  Google Scholar 

  19. D’Alessandro, B., Antünez, K., Piccini, C., and Zunino, P., DNA Extraction and PCR Detection of Paenibacillus larvae Spores from Naturally Contaminated Honey and Bees Using Spore-Decoating and Freeze-Thawing Techniques, J. Microbiol. Biotechnol., 2007, vol. 23, pp. 593–597.

    Article  Google Scholar 

  20. Lewis, K., Persister Cells, Dormancy and Infectious Disease, Nat. Rev. Microbiol., 2007, vol. 5, pp. 48–56.

    Article  CAS  PubMed  Google Scholar 

  21. Sudo, S.Z. and Dworkin, M., Comparative Biology of Prokaryotic Resting Cells, Adv. Microb. Physiol., 1973, vol. 9, pp. 153–224.

    Article  CAS  PubMed  Google Scholar 

  22. Anuchin, A., Mulyukin, A., Suzina, N., Duda, V., El-Registan, G., and Kaprelyants, A., Dormant Forms of Mycobacterium smegmatis with Distinct Morphology, Microbiology (UK), 2009, vol. 155, pp. 1071–1079.

    Article  CAS  Google Scholar 

  23. Kell, D.B., Kaprelyants, A.S., Weichart, D.H., Harwood, C.R., and Barer, M.R., Viability and Activity in Readily Culturable Bacteria: A Review and Discussion of the Practical Issues, Antonie van Leeuwenhoek, 1998, vol. 73, pp. 169–187.

    Article  CAS  PubMed  Google Scholar 

  24. Garton, N.J., Christensen, H., Minnikin, D.E., Adegbola, R.A., and Barer, M.R., Intracellular Lipophilic Inclusions of Mycobacteria in vitro and in Sputum, Microbiology (UK), 2002, vol. 148, pp. 2951–2958.

    CAS  PubMed  Google Scholar 

  25. Garton, N.J., Waddell, S.J., Sherratt, A.L., Lee, S.M., Smith, R.J., Senner, C., Hinds, J., Rajakumar, K., Adegbola, R.A., Besra, G.S., Butcher, P.D., and Barer, M.R., Cytological and Transcript Analyses Reveal Fat and Lazy Persister-Like Bacilli in Tuberculous Sputum, PLoS Med, 2008, vol. 5, no. 4, p. e75.

    Article  PubMed  Google Scholar 

  26. Blokpoel, M.C.J., Smeulders, M.J., Hubbard, J.A.M., Keer, J., and Williams, H.D., Global Analysis of Proteins Synthesized by Mycobacterium smegmatis Provides Direct Evidence for Physiological Heterogeneity in Stationary-Phase Cultures, J. Bacteriol., 2005, vol. 187, no. 19, pp. 6691–6670.

    Article  CAS  PubMed  Google Scholar 

  27. Keer, J., Smeulders, M.J., Gray, K.M., and Williams, H.D., Mutants of Mycobacterium smegmatis Impaired in Stationary-Phase Survival, Microbiology (UK), 2000, vol. 146, pp. 2209–2217.

    CAS  Google Scholar 

  28. Ojha, A.K., Mukherjee, T.K., and Chatterji, D., High Intracellular Level of Guanosine Tetraphosphate in Mycobacterium smegmatis Changes the Morphology of the Bacterium, Infect. Immun., 2000, vol. 68, no. 7, pp. 4084–4091.

    Article  CAS  PubMed  Google Scholar 

  29. Ghosh, J., Larsson, P., Singh, B., Pettersson, B.M., Islam, N.M., Sarkar, S.N., Dasgupta, S., and Kirsebom, L.A., Sporulation in Mycobacteria, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 10781–10786.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Mulyukin.

Additional information

Original Russian Text © A.L. Mulyukin, Yu.K. Kudykina, M.O. Shleeva, A.M. Anuchin, N.E. Suzina, V.N. Danilevich, V.I. Duda, A.S. Kaprelyants, G.I. El’-Registan, 2010, published in Mikrobiologiya, 2010, Vol. 79, No. 4, pp. 486–497.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulyukin, A.L., Kudykina, Y.K., Shleeva, M.O. et al. Intraspecies diversity of dormant forms of Mycobacterium smegmatis . Microbiology 79, 461–471 (2010). https://doi.org/10.1134/S0026261710040089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261710040089

Key words

Navigation