Skip to main content
Log in

CdS/BiOBr Nanocomposite with Enhanced Activity under Visible Light for Photocatalytic Reduction of CO2 in Cyclohexanol

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The CdS/BiOBr nanocomposites were synthesized through a hydrothermal deposition method. The structure and properties of the as-prepared nanocomposites were characterized by XRD, SEM, TEM, UV–Vis DRS, and PL. The characterizations indicated that the CdS/BiOBr nanocomposites exhibited flower-like microsphere morphologies with good crystallinity, and showed strong photoabsorption both UV and visible light. The photocatalytic activities were investigated in photocatalytic CO2 reduction in cyclohexanol under visible light irradiation. The CdS/BiOBr nanocomposites showed much better photocatalytic activity than the pristine BiOBr sample. The highest yields of the expected products (cyclohexyl formate and cyclohexanone were obtained over 5% CdS/BiOBr composite. A plausible mechanism for photocatalytic CO2 reduction was proposed suggesting that the formation of heterojunction in the composite can facilitate charge transfer, which led to an improved photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bai, Y., Ye, L., Chen, T., Wang, P., Wang, L., Shi, X., and Wong, P.K., Appl. Catal., B, 2017, vol. 203, p. 633.

    Article  CAS  Google Scholar 

  2. Hamdy, M.S., Amrollahi, R., Sinev, I., Mei, B., and Mul, G., J. Am. Chem. Soc., 2013, vol. 136, p. 594.

    Article  Google Scholar 

  3. Markovskaya, D.V., Lyulyukin, M.N., Zhurenok, A.V., and Kozlova, E.A., Kinet. Catal., 2021, vol. 62, p. 488.

    Article  CAS  Google Scholar 

  4. Zhang, L., Zhang, L., Chen, Y., Zheng, Y., Guo, J., Wan, S., Wang, S., Ngaw, C.K., Lin, J., and Wang, Y., ACS Sustainable Chem. Eng., 2020, vol. 8, p. 5270.

    Article  CAS  Google Scholar 

  5. Ji, Y. and Luo, Y., J. Am. Chem. Soc., 2016, vol. 138, p. 15896.

    Article  CAS  Google Scholar 

  6. Inoue, T., Fujishima, A., Konishi, S., and Honda, K., Nature, 1979, vol. 277, p. 637.

    Article  CAS  Google Scholar 

  7. Liu, J.Y., Gong, X.Q., and Alexandrova, A.N., J. Phys. Chem. C, 2019, vol. 123, p. 3505.

    Article  CAS  Google Scholar 

  8. Kozhevnikova, N.S., Ul’yanova, E.S., Shalaeva, E.V., Zamyatin, D.A., Bokunyaeva, A.O., Yushkov, A.A., Kolosov, V.Yu., Buldakova, L.Yu., Yanchenko, M.Yu., Gorbunova, T.I., Pervova, M.G., Enyashin, A.N., and Vorokh, A.S., Kinet. Catal., 2019, vol. 60, p. 325.

    Article  CAS  Google Scholar 

  9. Wu, X., Lan, D., Zhang, R., Pang, F., and Ge, J., Langmuir, 2019, vol. 35, p. 194.

    Article  CAS  Google Scholar 

  10. Iizuka, K., Wato, T., Miseki, Y., Saito, K, and Kudo, A., J. Am. Chem. Soc., 2011, vol. 133, p. 20863.

    Article  CAS  Google Scholar 

  11. Wu, J., Xie, Y., Ling, Y., Si, J., Li, X., Wang, J., Ye, H., Zhao, J., Li, S., Zhao, Q., and Hou, Y., Chem. Eng. J., 2020, vol. 400, p. 125944.

    Article  CAS  Google Scholar 

  12. Tie, W., Du, Z., Yue, H., Bhattacharyya, S.S., Zheng, Z., He, W., and Lee, S.H., J. Colloids Interface Sci., 2020, vol. 579, p. 862.

    Article  CAS  Google Scholar 

  13. Sun, J., Li, X., Zhao, Q., and Liu, B., Appl. Catal., B, 2020, vol. 281, p. 119478.

    Article  Google Scholar 

  14. Cui, W., An, W., Liu, L., Hu, J., and Liang, Y., J. Hazard. Mater., 2014, vol. 280, p. 417.

    Article  CAS  Google Scholar 

  15. Bai, Y., Chen, T., Wang, P., Wang, L., Ye, L., Shi, X., and Bai, W., Sol. Energy Mater. Sol. Cells., 2016, vol. 157, p. 406.

    Article  CAS  Google Scholar 

  16. Ye, L., Liu, J., Jiang, Z., Peng, T., and Zan, L., Appl. Catal., B, 2013, vol. 142, p. 1.

    Google Scholar 

  17. Song, G., Xin, F., Chen, J., and Yin, X., Appl. Catal., A, 2014, vol. 473, p. 90.

  18. Cui, Y., Jia, Q., Li, H., Han, J., Zhu, L., Li, S., Zou, Y., and Yang, J., Appl. Surf. Sci., 2014, vol. 290, p. 233.

    Article  CAS  Google Scholar 

  19. Ganesh, R.S., Sharma, S.K., Durgadevi, E., Navaneethan, M., Ponnusamy, S., Muthamizhchelvan, C., HayakawacDeuk, Y., and Kim, D.Y., Mater. Res. Bull., 2017, vol. 94, p. 190.

    Article  CAS  Google Scholar 

  20. Song, G., Xin, F., and Yin, X., J. Colloid. Interf. Sci., 2015, vol. 442, p. 60.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science projects of Shaanxi Polytechnic Institute (2021YKYB-056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Wu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations: XRD, X-ray diffraction; FESEM, field-emission scanning electron microscope; TEM, transmission electron microscopy; UV–Vis DRS, UV–Vis diffuse reflectance spectra; PL, photoluminescence; XPS, X-ray photoelectron spectroscopy; GC–MS, gas chromatography–mass spectrometry; EDS, energy-dispersive X-ray spectroscopy; CF, cyclohexyl formate; CH, cyclohexanone; CB, conduction band; VB, valence bond; NHE, normal hydrogen electrode; CTAB, cetyltrimethylammonium bromide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Wu, X. CdS/BiOBr Nanocomposite with Enhanced Activity under Visible Light for Photocatalytic Reduction of CO2 in Cyclohexanol. Kinet Catal 62 (Suppl 1), S1–S8 (2021). https://doi.org/10.1134/S0023158422020100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422020100

Keywords:

Navigation