Skip to main content
Log in

Catalytic oxidation of glyoxal to glyoxalic acid over Au-Pd alloy nanoparticles on hydrotalcite

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Synthesis of glyoxalic acid by selective oxidation of glyoxal at ambient temperatures with O2 as an oxidant is an important problem. We found that gold nanoparticles supported on hydrotalcite (Au/HT) exhibit an appreciable catalytic activity for this reaction in the liquid phase. Moreover, Au-Pd/HT, prepared by the deposition-precipitation method is superior in the catalytic behavior to monometallic Au/HT and Pd/HT catalysts. Introduction of palladium enhances ability of the catalysts to oxidize carbonyl to carboxyl, weakens the power to rupture C-C bond and in this way improves the catalytic performance. Furthermore, the Au: Pd ratio also influences the properties of the alloy catalysts. The 1.5Au-1.5Pd/HT catalysts show the highest activity for the selective oxidation at ambient temperature producing glyoxalic acid in 13.4% yield at pH 7.7. Moreover, due to basic properties of hydrotalcite, glyoxalic acid could be synthesized over 1.5Au-1.5Pd/HT in 8.0% yield without adding a base. It is hoped that results of this study can fuel further research in designing new catalysts with alloy nanoparticles supported by hydrotalcite that can be used for the selective oxidation of other useful compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, Z., Eli, W., Xu, T., and Zhang, Y., Ind. Eng. Chem. Res., 2006, vol. 45, p. 1849.

    Article  CAS  Google Scholar 

  2. Zhang, N. Chen, X., Cao, G., and Yuan, W., React. Kinet. Mech. Catal., 2010, vol. 99, p. 325.

    Google Scholar 

  3. Yadav. G. and Gupta, V., Process, Biochem., 2000, vol. 36, p. 73.

    Article  CAS  Google Scholar 

  4. Alardin, F., Ruiz, P., Delmon, B., and Devillers, M., Appl. Catal., A, 2001, vol. 215, p. 125.

    Article  CAS  Google Scholar 

  5. Alardin, F., Delmon, B., Ruiz, P., and Devillers, M., Catal. Today, 2000, vol. 61, p. 255.

    Article  CAS  Google Scholar 

  6. Mattioda, G. and Christidis, Y., Ullmann’s Encyclopedia of Industrial Chemistry, New York: Wiley, 1989, p. 495.

    Google Scholar 

  7. Niu, Y. and Li, R., Sci. China., Ser. B: Chem., 2009, vol. 52, p. 1057.

    Article  CAS  Google Scholar 

  8. Niu, Y., Xu, Z., Li, M., and Li, R., Chin. Chem. Lett., 2008, vol. 19, p. 245.

    Article  CAS  Google Scholar 

  9. Hermans, S., Deffernez, A., and Devillers, M., Appl. Catal., A, 2011, vol. 395, p. 19.

    Article  CAS  Google Scholar 

  10. Gallezot, P., Mesanstourne, R., Christidis, Y., Mattioda, G., and Schouteeten, A., J. Catal., 1992, vol. 133, p. 479.

    Article  CAS  Google Scholar 

  11. Gallezot, P., de Mesanstourne, R., Christidist, Y., and Mattioda, G., J. Catal., 1992, vol. 133, p. 479.

    Article  CAS  Google Scholar 

  12. Deffernez, A., Hermans, S., and Devillers, M., Appl. Catal., A, 2005, vol. 282, p. 303.

    Article  CAS  Google Scholar 

  13. Alardin, F., Wullens, H., Hermans, S., and Devillers, M., J. Mol. Catal. A: Chem., 2005, vol. 225, p. 79.

    Article  CAS  Google Scholar 

  14. Manolis, S. and Hermenegildo, G., Chem. Rev., 2012, vol. 112, p. 4469.

    Article  Google Scholar 

  15. Cavani, F., Trifir, F., and Vaccari, A., Catal. Today, 1991, vol. 11, p. 173.

    Article  CAS  Google Scholar 

  16. Akifumi, N., Tomoo, M., Koichiro, J., and Kiyotomi, K., Green Chem., 2009, vol. 11, p. 793.

    Article  Google Scholar 

  17. Orthman, J., Zhu, H., and Lu, G., Sep. Purif. Technol., 2003, vol. 31, p. 53.

    Article  CAS  Google Scholar 

  18. Kushwaha, P., Srivastava, V., Bhatt, S., and Jasra, R., Ind. Eng. Chem. Res., 2007, vol. 46, p. 4856.

    Article  Google Scholar 

  19. Hermans, S. and Devillers, M., Catal. Lett., 2005, vol. 99, p. 55.

    Article  CAS  Google Scholar 

  20. Bolognini, M., Cavania, F., Scagliarini, D., Flego, C., Perego, C., and Saba, M., Catal. Today, 2002, vol. 75, p. 103.

    Article  CAS  Google Scholar 

  21. Castro, C., Cardoso, D., Nascente, P., and Assaf, J., Catal. Lett., 2011, vol. 141, p. 1316.

    Article  CAS  Google Scholar 

  22. Wang, D., Alberto, V., Francesca, P., Laura, P., and Su, D., J. Phys. Chem. C, 2008, vol. 112, p. 8617.

    Article  CAS  Google Scholar 

  23. Zhu, Y., Chen, X., Zheng, Z., Ke, X., Esa, J., Zhao, J., Guo, C., Xie, T., and Wang, D., Chem. Commun., 2009, vol. 48, p. 7524.

    Article  Google Scholar 

  24. Tuzovskaya, I., Bogdanchikova, N., Simakov, A., Gurin, V., Pestryakov, A., Avalos, M., and Farias, M., Chem. Phys., 2007, vol. 338, p. 23.

    Article  CAS  Google Scholar 

  25. Boccuzzi, F., Cerrato, G., Pinna, F., and Strukul, G., J. Phys. Chem. B, 1998, vol. 102, p. 5733.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Jia.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, M.L., Liu, C.X., Wang, J. et al. Catalytic oxidation of glyoxal to glyoxalic acid over Au-Pd alloy nanoparticles on hydrotalcite. Kinet Catal 55, 671–675 (2014). https://doi.org/10.1134/S0023158414050061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158414050061

Keywords

Navigation