Skip to main content
Log in

SYNTHESES, CRYSTAL STRUCTURES AND THERMAL STABILITIES OF TWO COPPER COMPLEXES BASED ON 3,7-DI(3-PYRIDYL)-1,5-DIOXA-3,7-DIAZACYCLOOCTANE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Reaction of an eight-membered heterocycle supported bipyridine 3,7-di(3-pyridyl)-1,5-dioxa-3,7-diazacyclooctane (L) with copper salts gave rise to two discrete dinuclear complexes Cu2Cl4(L)2 (1), Cu2(CH3COO)4(L)2 (2). In complexes 1 and 2, copper ions bridged by the semirigidity ligand and anions form metallamacrocycles. They are neutral molecules and rectangular in shape. Copper ions related each other via an inversion center are connected by two anions in a μ2-bridge mode. Their cavities are bisected by the Cu22-X)2 (X = Cl, CH3COO) bridges. Each copper ion adopts a distorted square-pyramidal geometry. Thermal analyses show that the ligand plays an important role on stability in both complexes. Their phase purity of bulk products was further confirmed by powder diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. R. Angamuthu, P. Byers, M. Lutz, A. L. Spek, and E. Bouwman. Science, 2010, 327, 313-315. https://doi.org/10.1126/science.1177981

    Article  CAS  Google Scholar 

  2. N. G. White, J. A. Kitchen, J. A. Jouleb, and S. Brooker. Chem. Commun., 2012, 48, 6229-6231. https://doi.org/10.1039/c2cc32018e

    Article  CAS  Google Scholar 

  3. S. Hu, J. C. Chen, M. Tong, B. Wang, Y. X. Yan, and S. R. Batten. Angew. Chem., Int. Ed., 2005, 44, 5471-5475. https://doi.org/10.1002/anie.200501753

    Article  CAS  Google Scholar 

  4. L. C. Kang, X. Chen, X. S. Wang, Y. Z. Li, Y. Song, J. L. Zuo, and X. Z. You. Dalton Trans., 2011, 40, 5200-5209. https://doi.org/10.1039/c0dt01472a

    Article  CAS  Google Scholar 

  5. M. Abdalrahman, C. P. Landee, S. G. Telfer, M. M. Turnbull, and J. L. Wikaira. Inorg. Chim. Acta, 2012, 389, 66-76. https://doi.org/10.1016/j.ica.2012.01.050

    Article  CAS  Google Scholar 

  6. K. C. Shortsleeves, L. N. Dawe, C. P. Landee, and M. M. Turnbull. Inorg. Chim. Acta, 2009, 362, 1859-1866. https://doi.org/10.1016/j.ica.2008.08.031

    Article  CAS  Google Scholar 

  7. S. A. Adonin, A. S. Novikov, K. V. Chernov, D. A. Vinnik, S. V. Taskaev, I. V. Korolkov, E. V. Ilyina, A. A. Pavlov, V. V. Novikov, M. N. Sokolov, and V. P. Fedin. Inorg. Chim. Acta, 2020, 502, 119333. https://doi.org/10.1016/j.ica.2019.119333

    Article  CAS  Google Scholar 

  8. F. F. Awwadi, R. D. Willett, B. Twamley, M. M. Turnbull, and C. P. Landee. Cryst. Growth Des., 2015, 15, 3746-3754. https://doi.org/10.1021/acs.cgd.5b00393

    Article  CAS  Google Scholar 

  9. P. Grosshans, A. Jouaiti, V. Bulach, J. M. Planeix, M. W. Hosseini, and N. Kyritsakas. Eur. J. Inorg. Chem., 2004, 2004, 453-458. https://doi.org/10.1002/ejic.200300598

    Article  CAS  Google Scholar 

  10. C. D. Jones, J. C. Tan, and G. O. Lloyd. Chem. Commun., 2012, 48, 2110-2112. https://doi.org/10.1039/c2cc16691g

    Article  CAS  Google Scholar 

  11. G. S. Papaefstathiou and L. R. MacGillivray. Angew. Chem., Int. Ed., 2002, 41, 2070-2073. https://doi.org/10.1002/1521-3773(20020617)41:12%3C2070::AID-ANIE2070%3E3.0.CO;2-1

    Article  CAS  Google Scholar 

  12. S. A. Adonin, A. S. Novikov, Yu. K. Smirnova, Z. R. Tushakova, and V. P. Fedin. J. Struct. Chem., 2020, 61(5), 712-718. https://doi.org/10.1134/S0022476620050066

    Article  CAS  Google Scholar 

  13. M. A. Bondarenko, A. S. Novikov, T. S. Sukhikh, I. V. Korolkov, M. N. Sokolov, and S. A. Adonin. J. Mol. Struct., 2021, 1244, 130942. https://doi.org/10.1016/j.molstruc.2021.130942

    Article  CAS  Google Scholar 

  14. M. A. Bondarenko, P. A. Abramov, A. S. Novikov, M. N. Sokolov, and S. A. Adonin. Polyhedron, 2022, 214, 115644. https://doi.org/10.1016/j.poly.2021.115644

    Article  CAS  Google Scholar 

  15. S. A. Adonin, A. S. Novikov, and V. P. Fedin. Russ. J. Coord. Chem., 2020, 46, 119-124. https://doi.org/10.1134/S1070328420020013

    Article  CAS  Google Scholar 

  16. P. L. Caradoc-Davies and L. R. Hanton. Dalton Trans., 2003, 2003, 1754-1758. https://doi.org/10.1039/b300761h

    Article  Google Scholar 

  17. D. Braga, M. Polito, D. DAddari, E. Tagliavini, D. M. Proserpio, F. Grepioni, and J. W. Steed. Organometallics, 2003, 22, 4532-4538. https://doi.org/10.1021/om030432t

    Article  CAS  Google Scholar 

  18. L. Li, H. Y. Li, Z. G. Ren, and J. P. Lang. Eur. J. Inorg. Chem., 2014, 2014, 824-830. https://doi.org/10.1002/ejic.201301433

    Article  CAS  Google Scholar 

  19. L. Li. Chin. J. Inorg. Chem., 2021, 37, 121-130.

  20. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2008, 64, 112-122.

  21. L. Dobrzańska, G. O. Lloyd, and L. J. Barbour. New J. Chem., 2008, 32, 813-819. https://doi.org/10.1039/b800720a

    Article  CAS  Google Scholar 

  22. H. Yang, X. M. Sun, and X. M. Ren. Polyhedron, 2014, 83, 24-29. https://doi.org/10.1016/j.poly.2014.03.043

    Article  CAS  Google Scholar 

  23. K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Complexes, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed. Wiley, 2009. https://doi.org/10.1002/9780470405888

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Li.

Ethics declarations

The author declares that he has no conflicts of interests.

Additional information

Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 12, 102605.https://doi.org/10.26902/JSC_id102605

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L. SYNTHESES, CRYSTAL STRUCTURES AND THERMAL STABILITIES OF TWO COPPER COMPLEXES BASED ON 3,7-DI(3-PYRIDYL)-1,5-DIOXA-3,7-DIAZACYCLOOCTANE. J Struct Chem 63, 1929–1937 (2022). https://doi.org/10.1134/S0022476622120034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622120034

Keywords

Navigation