Skip to main content
Log in

STRUCTURE OF PARAMAGNETIC DIFURAZANOPYRAZINE AMMONIUM SALTS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure of previously unknown compounds NH4(HL)(HL)·3H2O and NH4(L)x(HL)1x·H2O (L is a radical anion, HL is a deprotonated difurazanopyrazine derivative, HL is a product of difurazanopyrazine oxidation) prepared by the oxidation of difurazanopyrazine (H2L) in aqueous ammonia is described. It is established that the shortest distances between the neighboring {L} in NH4(HL)(HL)·3H2O and NH4(L)x(HL)1–x·H2O fall within a fairly narrow range of 3.15-3.30 Å, despite the fact that they have substantially different stackings of {L} fragments. The bond lengths and bond angles of molecules {L} in all the studied compounds differ insignificantly. The energy of interaction between the paramagnetic centers in ammonium difurazanopyrazine salts is sharply diminished due to the decreased content of paramagnetic particles and, consequently, increased distances between these particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Organic Chemistry of Stable Free Radicals / Eds. A. R. Forrester, J. M. Hey, and R. H. Thompson. London, New York: Academic Press, 1968.

  2. L. B. Volodarsky, V. A. Reznikov, and V. I. Ovcharenko. Synthetic Chemistry of Stable Nitroxides. CRC Press, 2017. https://doi.org/10.1201/9780203710159

    Book  Google Scholar 

  3. Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds / Ed. R. G. Hicks. Chichester, UK: John Wiley & Sons, 2010. https://doi.org/10.1002/9780470666975

    Book  Google Scholar 

  4. G. I. Likhtenshtein. Nitroxides: Brief History, Fundamentals, and Recent Developments: Springer Series in Materials Science, Vol. 292. Cham: Springer International Publishing, 2020. https://doi.org/10.1007/978-3-030-34822-9

    Book  Google Scholar 

  5. J. F. W. Keana. Chem. Rev., 1978, 78(1), 37-64. https://doi.org/10.1021/cr60311a004

    Article  CAS  Google Scholar 

  6. S. N. Datta, C. O. Trindle, and F. Illas. Theoretical and Computational Aspects of Magnetic Organic Molecules. Imperial College Press, 2014. https://doi.org/10.1142/p885

    Book  Google Scholar 

  7. S. K. Han, R. F. Smith, D. Kim, J. K. Wicks, J. R. Rygg, A. Lazicki, J. H. Eggert, and T. S. Duffy. Phys. Rev. B, 2021, 103(18), 184109. https://doi.org/10.1103/PhysRevB.103.184109

    Article  Google Scholar 

  8. E. V. Tretyakov and V. I. Ovcharenko. Russ. Chem. Rev., 2009, 78(11), 971-1012. https://doi.org/10.1070/RC2009v078n11ABEH004093

    Article  CAS  Google Scholar 

  9. S. Suzuki and K. Okada. In: Organic Redox Systems / Ed. T. Nishinaga. Hoboken, NJ: John Wiley & Sons, 2015, 269-285. https://doi.org/10.1002/9781118858981.ch8

    Chapter  Google Scholar 

  10. M. T. Lemaire. Pure Appl. Chem., 2010, 83(1), 141-149. https://doi.org/10.1351/PAC-CON-10-10-20

    Article  Google Scholar 

  11. V. I. Ovcharenko, A. B. Sheremetev, K. V. Strizhenko, S. V. Fokin, G. V. Romanenko, A. S. Bogomyakov, V. A. Morozov, M. A. Syroeshkin, A. Y. Kozmenkova, A. V. Lalov, and M. P. Egorov. Mendeleev Commun., 2021, 31(6), 784-788. https://doi.org/10.1016/j.mencom.2021.11.005

    Article  CAS  Google Scholar 

  12. V. I. Ovcharenko, S. V. Fokin, A. B. Sheremetev, K. V. Strizhenko, G. V. Romanenko, A. S. Bogomyakov, and M. P. Egorov. J. Struct. Chem., 2022, 63(10), 100166. https://doi.org/10.26902/JSC_id100166

    Article  Google Scholar 

  13. I. B. Starchenkov, V. G. Andrianov, and A. F. Mishnev. Chem. Heterocycl. Compd., 1997, 33(2), 216-228. https://doi.org/10.1007/BF02256764

    Article  CAS  Google Scholar 

  14. G. M. Sheldrick. Acta Crystallogr., Sect. A: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  15. A. L. Spek. Acta Crystallogr., Sect. E: Crystallogr. Commun., 2020, 76(1), 1-11. https://doi.org/10.1107/S2056989019016244

    Article  CAS  Google Scholar 

  16. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor. J. Chem. Soc., Perkin Trans. 2, 1987, (12), S1-S17. https://doi.org/10.1039/p298700000s1

    Article  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Science and Higher Education of the Russian Federation (Agreement with IOC RAS No. 075-15-2020-803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Ovcharenko or G. V. Romanenko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 11, 101265.https://doi.org/10.26902/JSC_id101265

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovcharenko, V.I., Bogomyakov, A.S., Fokin, S.V. et al. STRUCTURE OF PARAMAGNETIC DIFURAZANOPYRAZINE AMMONIUM SALTS. J Struct Chem 63, 1779–1786 (2022). https://doi.org/10.1134/S0022476622110075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622110075

Keywords

Navigation