Skip to main content
Log in

LOCAL STRUCTURE OF PROTONATED MORDENITES WITH SiO2/Al2O3 ≈ 15 PROBED BY MULTINUCLEAR NMR

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two samples of protonated mordenite with close nominal molar ratios (MRs) SiO2/Al2O3 equal to 15.0 and 15.2 are studied by various physicochemical methods. Both samples have the mordenite crystal structure but different morphologies and exhibit different dehydration patterns. According to the 1H, 27Al, 29Si NMR data, these samples show different local structural features, e.g. relative coordination of Si and Al containing tetrahedra. The complex analysis of 1H NMR spectra of hydrated and partially dehydrated samples and IR spectroscopy data shows that acid sites in both samples are mainly bridging OH groups and that the charge in H-MOR-15.0 prepared from the ammonia form is neutralized (in addition to the hydroxyl groups) by residual ammonium ions, while the charge in H-MOR-15.2 prepared by acid etching is additionally neutralized by mobile H+ and/or H3O+ cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Catalysis and Zeolites. Fundamentals and Applications / Eds. J. Weitkamp and L. Puppe. Berlin, Heidelberg: Springer, 1999.

  2. T. Weissenberger, A. G. F. Machoke, B. Reiprich, and W. Schwieger. Adv. Mater. Interfaces, 2021, 8, 1. https://doi.org/0.1002/admi.202001653

    Article  CAS  Google Scholar 

  3. S. Narayanan, P. Tamizhdurai, V. L. Mangesh, C. Ragupathi, P. Santhana krishnan, and A. Ramesh. RSC Adv., 2020, 11, 250. https://doi.org/10.1039/D0RA09434J

    Article  CAS  Google Scholar 

  4. C. Baerlocher and L. B. McCusker. Database of zeolite structures. http://www.iza-structure.org/databases/(accessed Jan 18, 2022).

  5. K. Lu, J. Huang, L. Ren, C. Li, Y. Guan, B. Hu, H. Xu, J. Jiang, Y. Ma, P. Wu. Angew. Chem., Int. Ed., 2020, 59, 6258. https://doi.org/10.1002/anie.202000269

    Article  CAS  Google Scholar 

  6. J. Hancsók, T. Kasza, O. Visnyei. Energy, 2020, 13, 1672. https://doi.org/10.3390/en13071672

    Article  CAS  Google Scholar 

  7. H. Bateni, C. Able. Catal. Ind., 2019, 11, 7. https://doi.org/10.1134/S2070050419010045

    Article  Google Scholar 

  8. P. Sánchez-López, Y. Kotolevich, E. Khramov, R.K. Chowdari, M.A. Estrada, G. Berlier, Y. Zubavichus, S. Fuentes, V. Petranovskii, and F. Chávez-Rivas. Catalysts, 2020, 10, 1156. https://doi.org/10.3390/catal10101156

    Article  CAS  Google Scholar 

  9. M. C. Campa, D. Pietrogiacomi, and M. Occhiuzzi. Appl. Catal., B, 2015, 168/169, 293. https://doi.org/10.1016/j.apcatb.2014.12.040

    Article  CAS  Google Scholar 

  10. Y. Sugi. Korean J. Chem. Eng., 2000, 17, 1. https://doi.org/10.1007/BF02789245

    Article  CAS  Google Scholar 

  11. Y. Sugi, C. Anand, V. P. Subramaniam, J. Stalin, J. H. Choy, W. S. Cha, A. A. Elzatahry, H. Tamada, K. Komura, and A. Vinu. J. Mol. Catal. A: Chem., 2014, 395, 543. https://doi.org/10.1016/j.molcata.2014.08.035

    Article  CAS  Google Scholar 

  12. V. Petranovskii, R. F. Marzke, G. Diaz, A. Gomezc, N. Bogdanchikova, S. Fuentes, N. Katada, A. Pestryakov, and V. Gurin. In: Impact of Zeolites and other Porous Materials on the new Technologies at the Beginning of the New Millennium / Eds. R. Aiello, G. Giordano, and F. Testa: Studies in Surface Science and Catalysis, Vol. 142. Elsevier B.V., 2002, 815.

  13. M. Wang, S. Huang, J. Lü, Z. Cheng, Y. Li, S. Wang, and X. Ma. Chin. J. Catal., 2016, 37, 1530. https://doi.org/10.1016/S1872-2067(16)62484-1

    Article  CAS  Google Scholar 

  14. Y. Kalvachev, T. Todorova, and C. Popov. Catalysts, 2021, 11, 1. https://doi.org/10.3390/catal11030308

    Article  CAS  Google Scholar 

  15. N. F. Chelishchev, B. G. Berenshtein, and V. F. Volodin. Tseolity - Novyi Tip Mineralnogo Syrya (Zeolites - A New Type of Mineral Raw). Moscow: Nedra, 1987. [In Russian]

  16. B. A. Baran, I. M. Belenkaya, and M. M. Dubinin. Russ. Chem. Bull., 1973, 22, 490. https://doi.org/10.1007/BF00854009

    Article  Google Scholar 

  17. B. I. Shikunov, I. V. Mishin, G. A. Piloyan, A. L. Klyachko-Gurvich, L. I. Lafer, V. I. Yakerson, and A. M. Rubinshtein. Russ. Chem. Bull., 1973, 22, 746. https://doi.org/10.1007/BF00857041

    Article  Google Scholar 

  18. M. Kojima, M. W. Rautenbach, and C. T. OConnor. J. Catal., 1988, 112, 505. https://doi.org/10.1016/0021-9517(88)90166-2

    Article  CAS  Google Scholar 

  19. W. T. Lim, S. M. Seo, G. H. Kim, H. S. Lee, and K. Seff. J. Phys. Chem. C, 2007, 111, 18294. https://doi.org/10.1021/jp0742721

    Article  CAS  Google Scholar 

  20. N. V. Keltzev. Osnovy Adsorbtsionnoi Tekhniki (Basics of Adsorption Technology). Moscow: Khimiya, 1976. [In Russian]

  21. D. Barthomeuf. Mater. Chem. Phys., 1987, 17, 49. https://doi.org/10.1016/0254-0584(87)90048-4

    Article  CAS  Google Scholar 

  22. J. A. Rabo and G. J. Gajda. Catal. Rev., 1989, 31, 385. https://doi.org/10.1080/01614948909349936

    Article  CAS  Google Scholar 

  23. V. I. Chizhik, Y. S. Chernyshev, A. V. Donets, V. V. Frolov, A. V. Komolkin, and M. G. Shelyapina. Magnetic Resonance and Its Applications. Cham, Switzerland: Springer-International, 2014. https://doi.org/10.1007/978-3-319-05299-1

    Book  Google Scholar 

  24. Y. M. Zhukov, A. Y. Efimov, M. G. Shelyapina, V. Petranovskii, E. V. Zhizhin, A. Burovikhina, and I. A. Zvereva. Microporous Mesoporous Mater., 2016, 224, 415. https://doi.org/10.1016/j.micromeso.2015.12.058

    Article  CAS  Google Scholar 

  25. Y. M. Zhukov, A. N. Kovalyov, A. Y. Kultaeva, M. G. Shelyapina, and V. Petranovskii. Int. J. Nanotechnol., 2016, 13, 136. https://doi.org/10.1504/IJNT.2016.074529

    Article  CAS  Google Scholar 

  26. M. G. Shelyapina, R. I. Yocupicio-Gaxiola, I. V. Zhelezniak, M. V. Chislov, J. Antúnez‑García, F. N. Murrieta-Rico, D. H. Galván, V. Petranovskii, and S. Fuentes-Moyado. Molecules, 2020, 25, 4678. https://doi.org/10.3390/molecules25204678

    Article  CAS  PubMed Central  Google Scholar 

  27. E. A. Krylova, M. G. Shelyapina, P. Nowak, H. Harańczyk, M. Chislov, I. A. Zvereva, A. F. Privalov, M. Becker, M. Vogel, and V. Petranovskii. Microporous Mesoporous Mater., 2018, 265, 132. https://doi.org/10.1016/j.micromeso.2018.02.010

    Article  CAS  Google Scholar 

  28. M. G. Shelyapina, O. I. Silyukov, I. P. Lushpinskaia, S. A. Kurnosenko, A. S. Mazur, I. G. Shenderovich, and I. A. Zvereva. Molecules, 2020, 25, 15. https://doi.org/10.3390/molecules25225229

    Article  CAS  PubMed Central  Google Scholar 

  29. A. A. Tsyganenko. Top. Catal., 2013, 56, 905. https://doi.org/10.1007/s11244-013-0054-x

    Article  CAS  Google Scholar 

  30. M. G. Shelyapina, E. A. Krylova, Y. M. Zhukov, I. A. Zvereva, I. Rodriguez-Iznaga, V. Petranovskii, and S. Fuentes-Moyado. Molecules, 2019, 24, 4216. https://doi.org/10.3390/molecules24234216

    Article  CAS  PubMed Central  Google Scholar 

  31. D. S. Bogdanov, R. G. Novikov, O. S. Pestsov, D. A. Baranov, M. G. Shelyapina, A. A. Tsyganenko, I. A. Kasatkin, V. D. Kalganov, O. I. Silyukov, and V. Petranovskii. Mater. Chem. Phys., 2021, 261, 124235. https://doi.org/10.1016/j.matchemphys.2021.124235

    Article  CAS  Google Scholar 

  32. W. Pabst and E. Gregorová. Characterization of Particles and Particle Systems. Prague: ICT, 2007.

  33. A. L. Patterson. Phys. Rev., 1939, 56, 978. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  34. Y. M. Zhukov, M. G. Shelyapina, A. Y. Efimov, E. V. Zhizhin, and V. Petranovskii. Mater. Chem. Phys., 2019, 236, 121787. https://doi.org/10.1016/j.matchemphys.2019.121787

    Article  CAS  Google Scholar 

  35. T. J. Udovic, R. R. Cavanagh, J. J. Rush, M. J. Wax, G. D. Stucky, G. A. Jones, and D. R. Corbin. J. Phys. Chem., 1987, 91, 5968. https://doi.org/10.1021/j100307a031

    Article  CAS  Google Scholar 

  36. K. Nakamoto. Infrared Spectra of Inorganic and Coordination Compounds, 4th ed. New York, London: John Willey & Sons, 1963.

  37. C. A. Fyfe, Y. Feng, H. Grondey, G. T. Kokotailo, and H. Gies. Chem. Rev., 1991, 91, 1525. https://doi.org/10.1021/cr00007a013

    Article  CAS  Google Scholar 

  38. G. Engelhardt and D. Michel. High-Resolution Solid-State NMR of Silicates and Zeolites. Chichester: Wiley, 1987.

  39. D. H. Brouwer, C. C. Brouwer, S. Mesa, C. A. Semelhago, E. E. Steckley, M. P. Y. Sun, J. G. Mikolajewski, and C. Baerlocher. Microporous Mesoporous Mater., 2020, 297, 110000. https://doi.org/10.1016/j.micromeso.2020.110000

    Article  CAS  Google Scholar 

  40. M. Xu, K. D. M. Harris, and J. M. Thomas. Solid State Nucl. Magn. Reson., 2009, 35, 93. https://doi.org/10.1016/j.ssnmr.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  41. L. Heeribout, C. Dorémieux-Morin, J. P. Nogier, R. Vincent, and J. Fraissard. Microporous Mesoporous Mater., 1998, 24, 101. https://doi.org/10.1016/S1387-1811(98)00141-3

    Article  CAS  Google Scholar 

  42. H. Huo, L. Peng, and C. P. Grey. J. Phys. Chem. C, 2009, 113, 8211. https://doi.org/10.1021/jp900313y

    Article  CAS  Google Scholar 

  43. M. G. Shelyapina, O. I. Silyukov, E. A. Andronova, D. Y. Nefedov, A. O. Antonenko, A. Missyul, S. A. Kurnosenko, and I. A. Zvereva. Molecules, 2021, 26, 5943. https://doi.org/10.3390/molecules26195943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. G. Shelyapina, D. Y. Nefedov, A. V. Kostromin, O. I. Silyukov, and I. A. Zvereva. Ceram. Int., 2019, 45, 5788. https://doi.org/10.1016/j.ceramint.2018.12.045

    Article  CAS  Google Scholar 

  45. A. S. Cattaneo, C. Ferrara, A. M. Marculescu, F. Giannici, A. Martorana, P. Mustarelli, and C. Tealdi. Phys. Chem. Chem. Phys., 2016, 18, 21903.

  46. N. Essayem, Y. Y. Tong, H. Jobic, and J. C. Vedrine. Appl. Catal., A, 2000, 194/195, 109. https://doi.org/10.1016/S0926-860X(99)00359-2

    Article  CAS  Google Scholar 

  47. V. Hronský. Acta Electrotech. Inform., 2013, 13, 95. https://doi.org/10.2478/aeei-2013-0021

    Article  Google Scholar 

  48. J. P. Yesinowski, H. D. Ladouceur, A. P. Purdy, and J. B. Miller. J. Chem. Phys., 2010, 133, 234509. https://doi.org/10.1063/1.3526484

    Article  CAS  PubMed  Google Scholar 

  49. P. Losch, H. Joshi, N. Stegmann, O. Vozniuk, and W. Schmidt. Molecules, 2019, 24, 3199. https://doi.org/10.3390/molecules24173199

    Article  CAS  PubMed Central  Google Scholar 

  50. M. S. Katsiotis, M. Fardis, Y. Al Wahedi, S. Stephen, V. Tzitzios, N. Boukos, H. J. Kim, S. M. Alhassan, and G. Papavassiliou. J. Phys. Chem. C, 2015, 119, 3428. https://doi.org/10.1021/jp513030w

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR and SITMA, project number 18-53-34004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Shelyapina.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 6, pp. 796-809.https://doi.org/10.26902/JSC_id93425

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylova, E.A., Shelyapina, M.G., Mazur, A. et al. LOCAL STRUCTURE OF PROTONATED MORDENITES WITH SiO2/Al2O3 ≈ 15 PROBED BY MULTINUCLEAR NMR. J Struct Chem 63, 930–943 (2022). https://doi.org/10.1134/S0022476622060105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622060105

Keywords

Navigation