Skip to main content
Log in

Tensile deformation induced structural rearrangement in amorphous silicon nitride

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Silicon nitride exhibits good mechanical properties and thermal stability at high temperatures. Since experiments have limitations in nanoscale characterization of the chemical structure and related properties, atomistic simulation is a proper way to investigate the mechanism of this unique feature. In this paper, the melt-quench method is used to generate the amorphous structure of silicon nitride; then the structural properties of silicon nitride under tensile deformation were studied by angular pair distribution functions. The corresponding mechanism of tensile stress induced structure rearrangement is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lattemann and S. Ulrich, Surf. Coat. Technol., 201,Nos. 9–11, 5564–5569 (2007).

    Article  CAS  Google Scholar 

  2. A. A. Griffith, Philos. Trans. R. Soc. London, Ser. A, 221, 163–198 (1921).

    Article  Google Scholar 

  3. D. R. Irwin, J. Appl. Mech., 24, No. 3, 361–364 (1957).

    Google Scholar 

  4. G. I. Barenblatt, Adv. Appl. Mech., 7, 55–129 (1962).

    Article  Google Scholar 

  5. T. F. Soules and R. F. Busbey, J. Chem. Phys., 78, No. 10, 6307–6317 (1983).

    Article  CAS  Google Scholar 

  6. T. P. Swiler, T. Varghese, and J. H. Simmons, J. Non-Cryst. Solids, 181, No. 3, 238–243 (1995).

    Article  CAS  Google Scholar 

  7. K. Muralidharan, J. H. Simmons, P. A. Deymier, and K. Runge, J. Non-Cryst. Solids, 351, No. 18, 1532–1542 (2005).

    Article  CAS  Google Scholar 

  8. R. K. Kalia, A. Nakano, K. Tsuruta, and P. Vashishta, Phys. Rev. Lett., 78, No. 4, 689–692 (1997).

    Article  CAS  Google Scholar 

  9. J. Tersoff, Phys. Rev. B, 39, No. 8, 5556–5568 (1989).

    Article  Google Scholar 

  10. F. D. B Mota., J. F. Justo, and A. Fazzio, Phys. Rev. B, 58, No. 13, 8323–8328 (1998).

    Article  Google Scholar 

  11. N. Resta, C. Kohler, and H. R. Trebin, J. Am. Ceram. Soc., 86, No. 8, 1409–1414 (2003).

    Article  CAS  Google Scholar 

  12. K. Matsunaga and Y. Iwamoto, J. Am. Ceram. Soc., 84, No. 10, 2213–2219 (2001).

    Article  CAS  Google Scholar 

  13. S. J. Plimpton, J. Comp. Phys., 117, No. 1, 1–19 (1995).

    Article  CAS  Google Scholar 

  14. K. Binder and W. Kob, Glassy Materials and Disordered Solids: an Introduction to Their Statistical Mechanics, World Scientific, Singapore (2005).

    Google Scholar 

  15. T. Aiyama, T. Fukunaga, K. Niihara, and K. Susuki, J. Non-Cryst. Solids, 33, No. 2, 133–139 (1979).

    Article  Google Scholar 

  16. M. Misawa, T. Fukinga, K. Nihara, T. Hiral, and K. Suzuki, J. Non-Cryst. Solids, 34, No. 3, 313–321 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Liao.

Additional information

Original Russian Text Copyright © 2012 by N. Liao, W. Xue, P. Yang, M. Zhang

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 53, No. 2, pp. 219–223, March–April, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, N., Xue, W., Yang, P. et al. Tensile deformation induced structural rearrangement in amorphous silicon nitride. J Struct Chem 53, 215–219 (2012). https://doi.org/10.1134/S0022476612020023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612020023

Keywords

Navigation