Skip to main content
Log in

Bioenergetics of the lower vertebrates. Molecular mechanisms of adaptations to anoxia and hypoxia

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

In this review, causes of tremendous differences in respiration and oxidative metabolism between the homoiothermal and poikilothermal vertebrates are discussed. Tissues of the latter contain no lower, and sometimes even higher amount of mitochondria with the powerful potential of oxidative enzymes, as compared with the homoiothermal vertebrates; only 3–4% of this potential are realized due to a low rate of oxygen transport because of peculiarities of the cardiovascular system of the lower vertebrates. Limitation of the ATP synthesis provided a specific structure of plasma membranes with the much lower amount of channels for the passive ion leak as compared with the mammalian plasma membranes. Examples are presented of the homoiothermal animal cells (the frog olfactory receptor cell) that contact environment without participation of the blood circulation system and have the energy metabolism level comparable with that of mammalian cells. Examples of energetic aromorphosis are tunas with heat exchangers in several organs and with a powerful system of oxygen delivery to cells; owing to this, intensity of their oxidative metabolism could reach that of the higher terrestrial vertebrates. The closing part of this paper describes the molecular mechanisms that allow some representatives of reptiles, amphibians, and fish to survive long periods of hypoxia and anoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Savina, M.V., Mekhanizm adaptatsii tkanevogo dykhaniya v evolyutsii pozvonochnykh (Mechanism of Tissue Respiration in Evolution of Vertebrates), St. Petersburg, 1992.

  2. Bennett, A.F., Activity Metabolism of the Lower Vertebrates, Ann. Rev. Physiol., 1978, vol. 40, pp. 447–469.

    Article  CAS  Google Scholar 

  3. Hochachka, P.W., Defence Strategies against Hypoxia and Hypothermia, Science, 1986, vol. 231, pp. 234–241.

    Article  PubMed  CAS  Google Scholar 

  4. Hulbert, A.J. and Else, P.L., Comparison of the “Mammal Machine” and the “Reptile Machine”: Energy Use Thyroid Activity, Am. J. Physiol., 1981, vol. 241, pp. R350–R356.

    PubMed  CAS  Google Scholar 

  5. Else, P.L. and Hulbert, A.J., Evolution of Mammalian Endothermic Metabolism: “Leaky” Membranes as a Source of Heat, Am. J. Physiol., 1987, vol. 253, pp. R1–R7.

    PubMed  CAS  Google Scholar 

  6. Hochachka, P.W., Metabolic-, Channel- and Pump-Coupled Functions: Constraints and Compromises of Coadaptation, Can. J. Zool., 1988, vol. 66, pp. 1015–1027.

    Article  CAS  Google Scholar 

  7. Doll, C.J., Hochachka, P.W., and Reiner, P.B., Reduced Ionic Conductance in Turtle Brain, Am. J. Physiol., 1993, vol. 265, pp. R923–R928.

    Google Scholar 

  8. Doll, C.J., Hochachka, P.W., and Hand, S.C., A Microcalorimetric Study of Turtle Cortical Slices: Insights into Brain Metabolic Depression, J. Exp. Biol., 1994, vol. 191, pp. 141–153.

    PubMed  CAS  Google Scholar 

  9. Edwards, R., Lutz, P.L., and Baden, D., Relationship between Energy Expenditure and Ion Channel Function in the Rat and Turtle Brain, Am. J. Physiol., 1989, vol. 225, pp. R1345–R1359.

    Google Scholar 

  10. Hulbert, A.J., Else, P.L., Manolis, S.C., and Brand, M.D., Proton Leak in Hepatocyte and Liver Mitochondria from Archosaurs (Crocodiles) and Allometric Relationships for Ectotherms, J. Comp. Physiol., 2002, vol. 172, pp. 387–397.

    CAS  Google Scholar 

  11. Else, P.L. and Hulbert, A.J., Evolution of Mammalian Endothermic Metabolism: “Leaky” Membranes as a Source of Heat, Am. J. Physiol., 1987, vol. 253, pp. R1–R7.

    PubMed  CAS  Google Scholar 

  12. Stefani, E. and Chiarandini, D.J., Ionic Channels in Skeletal Muscle, Ann. Rev. Physiol., 1982, vol. 44, pp. 357–372.

    Article  CAS  Google Scholar 

  13. Lie, H.R., A Quantitative Identification of the Muscle Fiber Types in the Body Muscles of Lampetra fluviatilis and Their Relation to Blood Capillaries, Cell Tiss. Res., 1974, vol. 154, pp. 109–119.

    Article  CAS  Google Scholar 

  14. Eisenberg, B.R., Kuda, A.M., and Peter, J.B., Stereological Analysis of Mammalian Skeletal Muscle. 1. Soleus Muscle of Adult Guinea Pig, J. Cell Biol., 1974, vol. 60, no. 3, pp. 732–754.

    Article  PubMed  CAS  Google Scholar 

  15. Nag, A.C., Ultrastructure and Adenosine Triphosphatase Activity of Red and White Muscle Fibers of the Caudal Region of a Fish, Salmo gairdneri, J. Cell Biol., 1972, vol. 55, pp. 42–57.

    Article  PubMed  CAS  Google Scholar 

  16. Kryvi, H., Ultractructure of the Different Fibre Types in Axial Muscle of the Sharks Etmopterus spinax and Galeus melastomus, Cell Tiss. Res., 1977, vol. 184, pp. 287–300.

    Article  CAS  Google Scholar 

  17. Hulbert, W.G., Guppy, M., Murphy, B., and Hochachka, P.W., Metabolic Sources of Heat and Power in Tuna Muscle. 1. Muscle Fine Structure, J. Exp. Biol., 1979, vol. 82, pp. 289–301.

    PubMed  CAS  Google Scholar 

  18. Johnston, I.A. and Maitland, B., Temperature Acclimation in Crucian Carp: Morphometric Analysis of Muscle Fibre Ultrastructure, J. Fish Biol., 1980, vol. 17, pp. 113–125.

    Article  Google Scholar 

  19. Kryvi, H., Flood, P.R., and Gulyaev, D., The Ultrastructure and Vascular Supply of the Different Fibre Types in the Axial Muscle of the Sturgeon Acipenser stellatus, Cell Tissue Res., 1980, vol. 212, pp. 117–126.

    Article  PubMed  CAS  Google Scholar 

  20. Johnston, I.A. and Moon, Th.W., Endurance Exercise Training in the Fast and Slow Muscles of a Teleost Fish (Pollachus virens), J. Comp. Physiol., 1980, vol. 135, pp. 147–156.

    CAS  Google Scholar 

  21. Totland, G.K., Kryvi, H., Bone, Q., and Flood, P.R., Vascularization of the Lateral Muscle of Some Elasmobranchiomorph Fishes, J. Fish. Biol., 1981, vol. 18, pp. 223–234.

    Article  Google Scholar 

  22. Egginton, S. and Johnston, I.A., A Morphometric Analysis of Regional Differences in Myotomal Muscle Ultrastructure in the Juvenile Eel (Anguilla anguilla L.), Cell Tiss. Res., 1982, vol. 227, pp. 179–199.

    Google Scholar 

  23. Johnston, I.A., Quantitative Analyses of Ultrastructure and Vascularization of the Slow Muscle Fibres of the Anchovy, Tissue and Cell., 1982, vol. 14, no. 2, pp. 319–328.

    Article  PubMed  CAS  Google Scholar 

  24. Johnston, I.A. and Bernard, L.M., Ultrastructure and Metabolism of Skeletal Muscle Fibres in the Tench: Effects of Long Term Acclimation to Hypoxia, Cell Tiss. Res., 1982, vol. 227, pp. 179–199.

    CAS  Google Scholar 

  25. Hoppeler, H., Mathieu, O., Krauer, R., Claassen, H., Armstrong, R.B., and Weibel, E.R., Design of the Mammalian Respiratory System. 6. Distribution of Mitochondria and Capillaries in Various Muscles, Resp. Physiol., 1981, vol. 44, pp. 87–111.

    Article  CAS  Google Scholar 

  26. Hochachka, P.W., Guppy, M., Guderley, H.E., Storey, K.B., and Hulbert, W.C., Metabolic Biochemistry of Water- vs Air-Breathing Fishes: Muscle Enzymes and Ultrastructure, Can. J. Zool., 1978, vol. 56, pp. 736–750.

    Article  CAS  Google Scholar 

  27. Johnston, I.A. Structure and Function of Fish Muscles, Symp. Zool. Soc. (London), 1981, vol. 48, pp. 71–113.

    CAS  Google Scholar 

  28. Johnston, I.A., Capillarization, Oxygen Diffusion Distances and Mitochondrial Content of Carp Muscles Following Acclimation to Summer and Winter Temperature, Cell Tiss. Res., 1982, vol. 222, pp. 325–337.

    Article  CAS  Google Scholar 

  29. Coulson, R.A. and Hernander, Th., Alligator Metabolism Studies on Chemical Reactions in vivo, Comp. Biochem. Physiol., 1983, vol. 74B, pp. 15–36.

    Google Scholar 

  30. Nakazawa, T. and Nunokawa, T., Energy Transduction and Adenine Nucleotides in Mitochondria from Rat Liver after Hypoxic Perfusion, J. Biochem., 1977, vol. 82, pp. 1575–1583.

    PubMed  CAS  Google Scholar 

  31. Bronshtein, A.A., Obonyatel’nye retseptory pozvonochnykh (Olfactory Receptors of Vertebrates), Leningrad, 1977.

  32. Rudenko, Ya.N., Kinetics of Metabolic Activity of the Olfactory Lining from the Common Frog (Rana temporaria) under Effect of Odorants, Candidate Sci. Dissertation, St. Petersburg, 2007.

  33. Graham, J.B., Heat Exchange in the Yellowfin Tuna and Skipjack Tuna and Adaptive Signification of Elevated Temperatures in Scombrid Fishes, U.S. Fish Bull., 1975, vol. 73, pp. 219–229.

    Google Scholar 

  34. Stevens, E. and Dizon, A.E., Energetics of Locomotion in Warm-Bodied Fish, Ann. Rev. Physiol., 1982, vol. 44, pp. 121–131.

    Article  CAS  Google Scholar 

  35. Randall, D.J., Gas Exchange in Fish, Fish Physiology, Hoar, W.S. and Randall, D.J., Eds., New York: London: Acad., 1970, vol. 4, pp. 253–292.

    Google Scholar 

  36. Poupa, O., Lindstrom, L., Mareska, A., and Tota, B., Cardiac Growth, Myoglobin, Proteins and DNA in Developing Tuna (Thunnus thynnis thynnis L.), Comp. Biochem. Physiol., 1981, vol. 70, pp. 217–222.

    Article  Google Scholar 

  37. Laurs, R.M., Ulevitch, R., and Morrison, D.C., Estimates of Blood Volume in the Albacore Tuna, The Physiological Ecology of Tunas, Sharp, G.D. and Dizon, A.E., Eds., N.Y.; S.F.; L.; Acad., 1978, pp. 135–140.

  38. Klawe, W.L. and Barrett, J., Haemoglobin Content of the Blood of Six Species of Scombroid Fishes, Nature, 1963, vol. 198, p. 96.

    Article  PubMed  CAS  Google Scholar 

  39. Carey, F.G. and Teal, J.M., Mako and Porbeagle: Warm-Bodied Sharks, Comp. Biochem. Physiol., 1969, vol. 28, pp. 199–204.

    Article  PubMed  CAS  Google Scholar 

  40. Lutz, P.L. and Nilsson, G.E., Contrasting Strategies for Anoxic Brain Survival-Glycolysis Up or Down, J. Exp. Biol., 1997, vol. 200, pp. 411–419.

    PubMed  CAS  Google Scholar 

  41. Jackson, D.C., Hibernation without Oxygen: Physiological Adaptations of the Painted Turtle, J. Physiol., 2002, vol. 543, pp. 731–737.

    Article  PubMed  CAS  Google Scholar 

  42. Clark, V.M. and Miller, A.T., Studies on Anaerobic Metabolism in the Fresh-Water Turtle (Pseudemis scripta elegans), Comp. Biochem. Physiol., 1973, vol. 44A, pp. 55–62.

    Article  Google Scholar 

  43. Daw, J.Ch., Wenger, D.P., and Berne, R.M., Relationship between Cardiac Glycogen and Tolerance to Anoxia in the Western Painted Turtle, Chrysemis picta bellii, Comp. Biochem. Physiol., 1967, vol. 22, pp. 69–73.

    Article  PubMed  CAS  Google Scholar 

  44. Bickler, Ph.E. and Buck, L.T., Hypoxia Tolerance in Reptiles, Amphibians and Fishes: Life with Variable Oxygen Availability, Annu. Rev. Physiol., 2007, vol. 69, pp. 145–170.

    Article  PubMed  CAS  Google Scholar 

  45. Bickler, Ph.E., Donohoe, P.H., and Buck, L.T., Molecular Adaptations for Survival during Anoxia: Lessons from Lower Vertebrates, Neuroscientist, 2002, vol. 8,no. 3, pp. 234–242.

    PubMed  CAS  Google Scholar 

  46. Hochachka, P.W., Buck, L.T., Doll, C.J., and Land, S.C., Unifying Theory of Hypoxia Tolerance: Molecular/Metabolic Defence and Rescue Mechanisms for Survival Oxygen Lack, Proc. Nat. Acad. Sci. USA, 1996, vol. 93, pp. 9493–9498.

    Article  PubMed  CAS  Google Scholar 

  47. Kelly, D.A. and Storey, K.B., Organ-Specific Control of Glycolysis in Anoxic Turtles, Am. J. Physiol., 1988, vol. 225, pp. R774–R779.

    Google Scholar 

  48. Storey, K.B., Metabolic Adaptation Supporting Anoxia Tolerance in Reptiles: Recent Advances, Comp. Biochem. Physiol., 1996, vol. 113B,no. 1, pp. 23–35.

    CAS  Google Scholar 

  49. Bickler, Ph.E. and Buck, L.T., Adaptations of Vertebrate Neurons to Hypoxia and Anoxia: Maintaining Critical Ca2+ Concentrations, J. Exp. Biol., 1998, vol. 201, pp. 1141–1152.

    PubMed  CAS  Google Scholar 

  50. Buck, L.T. and Hochachka, P.W., Anoxic Suppression of Na+, K+, ATPase and Constant Membrane Potential in Hepatocytes; Support for Channel Arrest, Am J. Physiol., 1993, vol. 265, pp. R1020–R1025.

    PubMed  CAS  Google Scholar 

  51. Shin, D.S.-H., Wilkie, M.P., Pamenter, M.E., and Buck, L., Calcium and Protein Phosphatase 1/2A Attenuate N-Methyl-D-Aspartate Receptor Activity in the Anoxic Turtle Cortex, Comp. Biochem. Physiol., 2005, vol. 142A, pp. 50–57.

    CAS  Google Scholar 

  52. Lutz, P.L. and Nilsson, G.E., Vertebrate Brains at the Pilot Light, Respir. Physiol. Neurobiol., 2004, vol. 141, pp. 285–196.

    Article  PubMed  CAS  Google Scholar 

  53. Hochachka, P.W. and Lutz, P.L., Mechanism, Origin, and Evolution of Anoxia Tolerance in Animals, Comp. Biochem. Physiol., 2001, vol. 130B, pp. 435–459.

    CAS  Google Scholar 

  54. Boutilier, R.G., Donohoe, P.H., Tattersall, G.J., and West, T.G., Hypometabolic Homeostasis in Overwintering Aquatic Amphibians, J. Exp. Biol., vol. 200, pp. 387–400.

  55. Shoubridge, E.A., and Hochachka, P.W., Ethanol: Novel End Product of Vertebrate Anaerobic Metabolism, Science, 1980, vol. 209, pp. 308–309.

    Article  PubMed  CAS  Google Scholar 

  56. Johansson, D. and Nilsson, G.E., Roles of Energy Status, K+-ATP Channels and Channels Arrest in Fish Brain K+ Gradient Dissipation during Anoxia, J. Exp. Biol., 1995, vol. 198, pp. 2575–2580.

    PubMed  CAS  Google Scholar 

  57. Nilsson, G.E., Surviving Anoxia with the Brain Turned On, News Physiol. Sci., 2001, vol. 16, pp. 217–221.

    PubMed  CAS  Google Scholar 

  58. Boutilier, R.G., Mechanism of Metabolic Defence Against Hypoxia in Hibernating Frogs, Resp. Physiol., 2001, vol. 128, pp. 365–377.

    Article  CAS  Google Scholar 

  59. Knickerbocker, D.L. and Lutz, P.L., Slow ATP Loss and the Defence of Ion Homeostasis in the Anoxic Frog Brain, J. Exp. Biol., 2001, vol. 204, pp. 3547–3551.

    PubMed  CAS  Google Scholar 

  60. St-Pierre, J. and Boutilier, R.G., Aerobic Capacity of Frog Skeletal Muscle during Hibernation, Physiol. Biochem. Zool., 2001, vol. 74, pp. 390–397.

    Article  PubMed  CAS  Google Scholar 

  61. Donohoe, P.H., West, T.G., Boutilier, R.G., Factors Affecting Membrane Permeability and Ionic Homeostasis in the Cold-Submerged Frogs, J. Exp. Biol., 2000, vol. 203, pp. 405–414.

    PubMed  CAS  Google Scholar 

  62. St-Pierre, J., Brand, M.D., and Boutilier, R.G., The Effect of Metabolic Depression on Proton Leak Rate in Mitochondria from Hibernating Frogs, J. Exp. Biol., 2000, vol. 203, pp. 1469–1476.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M. V. Savina, L. V. Emelyanova, I. V. Brailovskaya, 2009, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2009, Vol. 45, No. 2, pp. 157–168.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savina, M.V., Emelyanova, L.V. & Brailovskaya, I.V. Bioenergetics of the lower vertebrates. Molecular mechanisms of adaptations to anoxia and hypoxia. J Evol Biochem Phys 45, 197–210 (2009). https://doi.org/10.1134/S0022093009020029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093009020029

Key words

Navigation