Skip to main content
Log in

Photoionization of Atomic Systems in Squeezed States of Light

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The ionization of an atom by a nonclassical electromagnetic field has been studied by a method developed to obtain results for an arbitrary initial state of the field, including squeezed vacuum with a large average number of photons. Characteristics of the ionization of atomic systems by nonclassical squeezed light have been demonstrated for the first time. In contrast to the case of a coherent field, a significantly smoother decrease in the contributions of different above-threshold channels to ionization has been found. Features of photo-electron spectra in continuum have been revealed for the first time as a significant overlapping of peaks from different ionization channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. V. Fedorov, Atomic and Free Electrons in a Strong Light Field (World Scientific, Singapore, 1997).

    Google Scholar 

  2. N. B. Delone and V. P. Krainov, Phys. Usp. 41, 469 (1998).

    Article  ADS  Google Scholar 

  3. R. V. Karapetyan and M. V. Fedorov, Sov. Phys. JETP 48, 412 (1978).

    ADS  Google Scholar 

  4. J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).

    Article  ADS  Google Scholar 

  5. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  6. S. N. Balybin, P. R. Sharapova, and O. V. Tikhonova, Eur. Phys. J. D 71, 109 (2017).

    Article  ADS  Google Scholar 

  7. S. N. Balybin, R. V. Zakharov, and O. V. Tikhonova, Laser Phys. Lett. 15, 055301 (2018).

    Article  ADS  Google Scholar 

  8. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

    Google Scholar 

  9. H. Reiss, Phys. Rev. A 22, 1786 (1980).

    Article  ADS  Google Scholar 

  10. D. M. Volkov, Z. Phys. 94, 250 (1935).

    Article  ADS  Google Scholar 

  11. I. Berson, Sov. Phys. JETP 29, 871 (1969).

    ADS  Google Scholar 

  12. J. Bergou and S. Varro, J. Phys. A: Math. Gen. 14, 1469 (1981).

    Article  ADS  Google Scholar 

  13. T. Sh. Iskhakov, A. M. Perez, K. Yu. Spasibko, M. V. Chekhova, and G. Leuchs, Opt. Lett. 37, 1919 (2012).

    Article  ADS  Google Scholar 

  14. A. I. Lvovsky, in Photonics, Ed. by D. L. Andrews (Wiley, Chichester, 2015), Vol. 1; arXiv:1401.4118.

  15. I. A. Gonoskov, G. A. Vugalter, and V. A. Mironov, J. Exp. Theor. Phys. 105, 1119 (2007).

    Article  ADS  Google Scholar 

  16. I. A. Burenkov and O. V. Tikhonova, J. Phys. B: At., Mol. Opt. Phys. 43, 235401 (2010).

    Article  ADS  Google Scholar 

  17. A. M. Popov and O. V. Tikhonova, J. Exp. Theor. Phys. 95, 844 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Balybin.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 109, No. 11, pp. 729–733.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balybin, S.N., Tikhonova, O.V. Photoionization of Atomic Systems in Squeezed States of Light. Jetp Lett. 109, 695–699 (2019). https://doi.org/10.1134/S0021364019110043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019110043

Navigation