Skip to main content
Log in

Graphite, Graphene, and the Flat Band Superconductivity

  • Discussion
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Superconductivity has been observed in bilayer graphene [1, 2]. The main factor that determines the mechanism of the formation of this superconductivity is the “magic angle” of twist of two graphene layers, at which the electronic band structure becomes nearly flat. The specific role played by twist and by the band flattening has been earlier suggested for explanations of the signatures of room-temperature superconductivity observed in the highly oriented pyrolytic graphite (HOPG), when the quasi two-dimensional interfaces between the twisted domains are present. The interface contains the periodic array of misfit dislocations (analogs of the boundaries of the unit cell of the Moiré superlattice in bilayer graphene), which provide the possible source of the flat band. This demonstrates that it is high time for combination of the theoretical and experimental efforts in order to reach the reproducible room-temperature superconductivity in graphite or in similar real or artificial materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras and P. Jarillo-Herrero, Nature (London, U.K.) 556, 43 (2018).

    Article  ADS  Google Scholar 

  2. Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature (London, U.K.) 556, 80 (2018).

    Article  ADS  Google Scholar 

  3. P. Esquinazi, T. T. Heikkila, Yu. V. Lysogorskiy, D. A. Tayurskii, and G. E. Volovik, JETP Lett. 100, 336 (2014).

    Article  ADS  Google Scholar 

  4. P. Esquinazi, Papers Phys. 5, 050007 (2013).

    Google Scholar 

  5. A. Ballestar, J. Barzola-Quiquia, T. Scheike, and P. Esquinazi, New J. Phys. 15, 023024 (2013).

    Article  ADS  Google Scholar 

  6. A. Ballestar, T. T. Heikkilä, and P. Esquinazi, Supercond Sci. Technol. 27, 115014 (2014).

    Article  ADS  Google Scholar 

  7. C. E. Precker, P. D. Esquinazi, A. Champi, J. Barzola-Quiquia, M. Zoraghi, S. Muinos-Landin, A. Setzer, W. Böhlmann, D. Spemann, J. Meijer, T. Muenster, O. Baehre, G. Kloess, and H. Beth, New J. Phys. 18, 113041 (2016).

    Article  ADS  Google Scholar 

  8. M. Stiller, P. D. Esquinazi, J. Barzola-Quiquia, and C. E. Precker, J. Low Temp. Phys. 191, 105 (2018).

    Article  ADS  Google Scholar 

  9. P. D. Esquinazi, Papers Phys. 5, 050009 (2013).

    Google Scholar 

  10. V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).

    ADS  Google Scholar 

  11. S. T. Belyaev, Sov. Phys. JETP 12, 968 (1961).

    Google Scholar 

  12. T. T. Heikkilä and G. E. Volovik, in Basic Physics of Functionalized Graphite (Springer, 2016), p. 123.

    Google Scholar 

  13. T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, JETP Lett. 94, 233 (2011).

    Article  ADS  Google Scholar 

  14. T. Hyart, R. Ojajärvi, and T. T. Heikkilä, J. Low Temp. Phys. 191, 35 (2018).

    Article  ADS  Google Scholar 

  15. H. K. Pal, S. Spitz, and M. Kindermann, arXiv:1803.07060.

  16. E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  17. R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. 108, 12233 (2011).

    Article  ADS  Google Scholar 

  18. G. E. Volovik, JETP Lett. 53, 222 (1991).

    ADS  Google Scholar 

  19. P. Nozieres, J. Phys. (Paris) 2, 443 (1992).

    Google Scholar 

  20. D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014).

    Article  ADS  Google Scholar 

  21. G. E. Volovik, JETP Lett. 59, 830 (1994).

    ADS  Google Scholar 

  22. A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, Phys. Rev. Lett. 112, 186402 (2014).

    Article  ADS  Google Scholar 

  23. M. Yu. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.-H. Huang, C. W. Liu, and S. V. Kravchenko, Sci. Rep. 7, 14539 (2017).

    Article  ADS  Google Scholar 

  24. E. Tang and L. Fu, Nat. Phys. 10, 964 (2014).

    Article  Google Scholar 

  25. F. de Juan, J. L. Manes, and M. A. H. Vozmediano, Phys. Rev. B 87, 165131 (2013).

    Article  ADS  Google Scholar 

  26. V. J. Kauppila, F. Aikebaier, and T. T. Heikkilä, Phys. Rev. B 93, 214505 (2016).

    Article  ADS  Google Scholar 

  27. A. Ramires and J. L. Lado, arXiv:1803.04400.

  28. G. P. Mikitik and Yu. V. Sharlai, Phys. Rev. B 90, 155122 (2014).

    Article  ADS  Google Scholar 

  29. G. P. Mikitik and Yu. V. Sharlai, Phys. Rev. B 73, 235112 (2006).

    Article  ADS  Google Scholar 

  30. G. P. Mikitik and Yu. V. Sharlai, Low Temp. Phys. 34, 794 (2008).

    Article  ADS  Google Scholar 

  31. N. B. Kopnin, JETP Lett. 94, 81 (2011).

    Article  ADS  Google Scholar 

  32. N. B. Kopnin, M. Ijäs, A. Harju, and T. T. Heikkilä, Phys. Rev. B 87, 140503(R) (2013).

    Article  ADS  Google Scholar 

  33. L. Liang, T. I. Vanhala, S. Peotta, T. Siro, A. Harju, and P. Torma, Phys. Rev. B 95, 024515 (2017).

    Article  ADS  Google Scholar 

  34. R. Ojajärvi, T. Hyart, M. Silaev, and T. T. Heikkilä, arXiv:1801.01794.

  35. H. Tasaki, Phys. Rev. Lett. 69, 1608 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Mielke and H. Tasaki, Commun. Math. Phys. 158, 341 (1993).

    Article  ADS  Google Scholar 

  37. T. Löthman and A. M. Black-Schaffer, Phys. Rev. B 96, 064505 (2017).

    Article  ADS  Google Scholar 

  38. Y. Kopelevich, V. V. Lemanov, S. Moehlecke, and J. H. S. Torres, Phys. Solid State 41, 1959 (1999).

    Article  ADS  Google Scholar 

  39. Y. Kopelevich, P. Esquinazi, J. H. S. Torres, and S. Moehlecke, J. Low Temp. Phys. 119, 691 (2000).

    Article  ADS  Google Scholar 

  40. Y. Kawashima, AIP Adv. 3, 052132 (2013).

    Article  ADS  Google Scholar 

  41. Y. Kawashima, arXiv:1801.09376.

  42. A. N. Ionov, Tech. Phys. Lett. 41, 651 (2015).

    Article  ADS  Google Scholar 

  43. A. N. Ionov, J. Low Temp. Phys. 185, 515 (2016).

    Article  ADS  Google Scholar 

  44. A. R. Khairullin, M. N. Nikolaeva, and A. N. Bugrov, Nanosystems 7, 1055 (2016).

    Google Scholar 

  45. R. R. da Silva, J. H. S. Torres, and Y. Kopelevich, Phys. Rev. Lett. 87, 147001 (2001).

    Article  ADS  Google Scholar 

  46. I. Felner, Magnetochemistry 2, 34 (2016).

    Article  Google Scholar 

  47. G. Larkins, Y. Vlasov, and K. Holland, Supercond. Sci. Technol. 29, 015015 (2016).

    Article  ADS  Google Scholar 

  48. F. Arnold, PhD (R. Holloway Univ. of London, London, 2015); J. Saunders, personal communication

    Google Scholar 

  49. F. Arnold, J. Nyéki, and J. Saunders, Pis’ma v ZhETF 107, 604 (2018) [JETP Lett. 107 (9) (2018)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Volovik.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volovik, G.E. Graphite, Graphene, and the Flat Band Superconductivity. Jetp Lett. 107, 516–517 (2018). https://doi.org/10.1134/S0021364018080052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018080052

Navigation