Skip to main content
Log in

Optical second harmonic generation induced by picosecond terahertz pulses in centrosymmetric antiferromagnet NiO

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Optical second harmonic generation at the photon energy of 2ℏω = 2eV in the model centrosymmetric antiferromagnet NiO irradiated with picosecond terahertz pulses (0.4–2.5 THz) at room temperature is detected. The analysis of experimental results shows that induced optical second harmonic generation at the moment of the impact of a terahertz pulse arises through the electric dipole mechanism of the interaction of the electric field of a pump pulse with the electron subsystem of NiO. Temporal changes in optical second harmonic generation during 7 ps after the action of the pulse are also of an electric dipole origin and are determined by the effects of propagation of the terahertz pulse in a NiO platelet. Coherent oscillations of spins at the antiferromagnetic resonance frequency induced by the magnetic component of the terahertz pulse induce a relatively weak modulation of magnetic dipole optical second harmonic generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, Th. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, Nature Photon. 5, 31 (2011).

    Article  ADS  Google Scholar 

  2. I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, Phys. Rev. Lett. 108, 097401 (2012).

    Article  ADS  Google Scholar 

  3. R. Zhou, Z. Jin, G. Li, G. Ma, Zh. Cheng, and X. Wang, Appl. Phys. Lett. 100, 061102 (2012).

    Article  ADS  Google Scholar 

  4. Z. Jin, Z. Mics, G. Ma, Zh. Cheng, M. Bonn, and D. Turchinovich, Phys. Rev. B 87, 094422 (2013).

    Article  ADS  Google Scholar 

  5. A. H. M. Reid, Th. Rasing, R. V. Pisarev, H. A. Dürr, and M. C. Hoffmann, Appl. Phys. Lett. 106, 082403 (2015).

    Article  ADS  Google Scholar 

  6. T. Kubacka, J. A. Johnson, M. C. Hoffmann, et al. (Collab.), Science 343, 1333 (2014).

    Article  ADS  Google Scholar 

  7. S. Grübel, J. A. Johnson, P. Beaud, et al. (Collab.), arXiv:1602.05435.

  8. F. Chen, J. Goodfellow, S. Liu, et al. (Collab.), Adv. Mater. 27, 6371 (2015).

    Article  Google Scholar 

  9. F. Junginger, A. Sell, O. Schubert, B. Mayer, D. Brida, M. Marangoni, G. Cerullo, A. Leitenstorfer, and R. Huber, Opt. Lett. 35, 2645 (2010).

    Article  ADS  Google Scholar 

  10. C. P. Hauri, C. Ruchert, C. Vicario, and F. Ardana, Appl. Phys. Lett. 99, 161116 (2011).

    Article  ADS  Google Scholar 

  11. C. Vicario, B. Monoszlai, and C. P. Hauri, Phys. Rev. Lett. 112, 213901 (2014).

    Article  ADS  Google Scholar 

  12. C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, Opt. Lett. 39, 6632 (2014).

    Article  ADS  Google Scholar 

  13. C. Vicario, M. Jazbinsek, A. V. Ovchinnikov, O. V. Chefonov, S. I. Ashitkov, M. B. Agranat, and C. P. Hauri, Opt. Express 23, 4573 (2015).

    Article  ADS  Google Scholar 

  14. H. Y. Hwang, Sh. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, J. Mod. Opt. 62, 1447 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Baierl, M. Hohenleutner, T. Kampfrath, A. Zvezdin, A. Kimel, R. Huber, and R. Mikhaylovskiy, in Proceedings of the CLEO:QELS Fundamental Science 2016 Conference (Opt. Soc. America, 2016), paper FTu1L.1.

    Google Scholar 

  16. M. Fiebig, V. V. Pavlov, and R. V. Pisarev, J. Opt. Soc. Am. B 22, 96 (2005).

    Article  ADS  Google Scholar 

  17. M. Fiebig, D. Fröhlich, K. Kohn, St. Leute, Th. Lottermoser, V. V. Pavlov, and R. V. Pisarev, Phys. Rev. Lett. 84, 5620 (2000).

    Article  ADS  Google Scholar 

  18. A. Kirilyuk and Th. Rasing, J. Opt. Soc. Am. 22, 148 (2005).

    Article  ADS  Google Scholar 

  19. M. Grimsditch, L. E. McNeil, and D. J. Lockwood, Phys. Rev. B 58, 14462 (1998).

    Article  ADS  Google Scholar 

  20. M. Fiebig, D. Fröhlich, Th. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, Phys. Rev. Lett. 87, 137202 (2001).

    Article  ADS  Google Scholar 

  21. Landolt–Börnstein: Numerical Data and Functional Relationships, New Series, Group III, Ed. by K. H. Hellwege and O. Madelung (Springer, Berlin, 1984), Vol. 17g.

  22. M. T. Hutchings and E. J. Samuelsen, Phys. Rev. B 6, 3447 (1972).

    Article  ADS  Google Scholar 

  23. K. Nakahigashi, N. Fukuoka, and Y. Shimomura, J. Phys. Soc. Jpn. 38, 1634 (1975).

    Article  ADS  Google Scholar 

  24. I. Sänger, V. V. Pavlov, M. Bayer, and M. Fiebig, Phys. Rev. B 74, 144401 (2006).

    Article  ADS  Google Scholar 

  25. Supplementary material this article at http://link. springer.com/.

  26. P. S. Pershan, Phys. Rev. 130, 919 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  27. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New Jersey, 2003).

    MATH  Google Scholar 

  28. M. Fiebig, D. Fröhlich, and R. V. Pisarev, J. Appl. Phys. 81, 4875 (1997).

    Article  ADS  Google Scholar 

  29. M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, Nature 419, 818 (2002).

    Article  ADS  Google Scholar 

  30. M. Fiebig, Th. Lottermoser, V. V. Pavlov, and R. V. Pisarev, J. Appl. Phys. 93, 6900 (2003).

    Article  ADS  Google Scholar 

  31. A. Zibold, H. L. Liu, S. W. Moore, J. M. Graybeal, and D. B. Tanner, Phys. Rev. B 53, 11734 (1996).

    Article  ADS  Google Scholar 

  32. Kh. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, J. Microelectron. Electron. Packag. 5, 101 (2008).

    Article  Google Scholar 

  33. W. Reichardt, V. Wagner, and W. Kress, J. Phys. C 8, 3955 (1975).

    Article  ADS  Google Scholar 

  34. A. K. Zvezdin and A. A. Mukhin, Kratk. Soobshch. Fiz. 12, 10 (1981) (in Russian).

    Google Scholar 

  35. T. Satoh, S.-J. Cho, R. Iida, Ts. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B. A. Ivanov, F. Nori, and M. Fiebig, Phys. Rev. Lett. 105, 077402 (2010).

    Article  ADS  Google Scholar 

  36. R. R. Subkhangulov, R. V. Mikhaylovskiy, A. K. Zvezdin, V. V. Kruglyak, Th. Rasing, and A. V. Kimel, Nature Photon. 10, 111 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kalashnikova.

Additional information

Original Russian Text © A.V. Ovchinnikov, O.V. Chefonov, M.B. Agranat, K.A. Grishunin, N.A. Il’in, R.V. Pisarev, A.V. Kimel, A.M. Kalashnikova, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 7, pp. 467–474.

Supplementary material is available at http://link.springer.com/.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, A.V., Chefonov, O.V., Agranat, M.B. et al. Optical second harmonic generation induced by picosecond terahertz pulses in centrosymmetric antiferromagnet NiO. Jetp Lett. 104, 441–448 (2016). https://doi.org/10.1134/S0021364016190085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016190085

Navigation