Skip to main content
Log in

Quantum dots formed in InSb/AlAs and AlSb/AlAs heterostructures

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The crystal structure of new self-assembled InSb/AlAs and AlSb/AlAs quantum dots grown by molecularbeam epitaxy has been investigated by transmission electron microscopy. The theoretical calculations of the energy spectrum of the quantum dots have been supplemented by the experimental data on the steady-state and time-resolved photoluminescence spectroscopy. Deposition of 1.5 ML of InSb or AlSb on the AlAs surface carried out in the regime of atomic-layer epitaxy leads to the formation of pseudomorphically strained quantum dots composed of InAlSbAs and AlSbAs alloys, respectively. The quantum dots can have the type-I and type-II energy spectra depending on the composition of the alloy. The ground hole state in the quantum dot belongs to the heavy-hole band and the localization energy of holes is much higher than that of electrons. The ground electron state in the type-I quantum dots belongs to the indirect X XY valley of the conduction band of the alloy. The ground electron state in the type-II quantum dots belongs to the indirect X valley of the conduction band of the AlAs matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. M. Wang, Self Assembled Quantum Dots (Springer, New York, 2008).

  2. M. D. Eisaman, Rev. Sci. Instrum. 82, 071101 (2011).

    Article  ADS  Google Scholar 

  3. R. Buckley, K. Rivoire, and J. Vuckovic, Rep. Prog. Phys. 75, 126503 (2012).

    Article  ADS  Google Scholar 

  4. A. Marent, M. Geller, A. Schliwa, D. Feise, K. Potschke, D. Bimberg, N. Akcay, and N. Oncan, Appl. Phys. Lett. 91, 242109 (2007).

    Article  ADS  Google Scholar 

  5. T. S. Shamirzaev, Semiconductors 45, 96 (2011).

    Article  ADS  Google Scholar 

  6. M.-E. Pistol and C. E. Pryor, Phys. Rev. B 80, 035316 (2009).

    Article  ADS  Google Scholar 

  7. T. S. Shamirzaev, J. Debus, D. S. Abramkin, D. Dunker, D. R. Yakovlev, D. V. Dmitriev, A. K. Gutakovskii, L. S. Braginsky, K. S. Zhuravlev, and M. Bayer, Phys. Rev. B 84, 155318 (2011).

    Article  ADS  Google Scholar 

  8. A. V. Khaetskii and Yu. V. Nazarov, Phys. Rev. B 61, 12639 (2000).

    Article  ADS  Google Scholar 

  9. D. Dunker, T. S. Shamirzaev, J. Debus, D. R. Yakovlev, K. S. Zhuravlev, and M. Bayer, Appl. Phys. Lett. 101, 142108 (2012).

    Article  ADS  Google Scholar 

  10. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  11. P. M. Petroff, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 45, 620 (1984).

    Article  ADS  Google Scholar 

  12. E. Michel, G. Singh, S. Slivken, C. Besikci, P. Bove, I. Ferguson, and M. Razegh, Appl. Phys. Lett. 65, 3338 (1994).

    Article  ADS  Google Scholar 

  13. T. S. Shamirzaev, D. S. Abramkin, A. K. Gutakovskii, and M. A. Putyato, JETP Lett. 95, 534 (2012).

    Article  ADS  Google Scholar 

  14. W. A. Harrison, Electronic Structure and Properties of Solid (W. H. Freeman, San Francisco, 1980), p. 838.

    Google Scholar 

  15. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Phys. Rev. B 68, 075409 (2003).

    Article  ADS  Google Scholar 

  16. K. M. Chen, D. E. Jesson, S. J. Pennycook, T. Thundat, and R. J. Warmack, Phys. Rev. B 56, R1700 (1997).

    Article  ADS  Google Scholar 

  17. Ch. Heyn, Phys. Rev. Lett. 64, 165306 (2001).

    Google Scholar 

  18. C. W. Snyder, J. F. Mansfield, and B. G. Orr, Phys. Rev. B 46, 9551 (1992).

    Article  ADS  Google Scholar 

  19. D. S. Abramkin, M. A. Putyato, S. A. Budennyy, A. K. Gutakovskii, B. R. Semyagin, V. V. Preobrazhenskii, O. F. Kolomys, V. V. Strelchuk, and T. S. Shamirzaev, J. Appl. Phys. 112, 083713 (2012).

    Article  ADS  Google Scholar 

  20. T. S. Shamirzaev, A. M. Gilinsky, A. K. Kalagin, A. V. Nenashev, and K. S. Zhuravlev, Phys. Rev. B 76, 155309 (2007).

    Article  ADS  Google Scholar 

  21. T. S. Shamirzaev, A. V. Nenashev, A. K. Gutakovskii, A. K. Kalagin, K. S. Zhuravlev, M. Larsson, and P. O. Holtz, Phys. Rev. B 78, 085323 (2008).

    Article  ADS  Google Scholar 

  22. S. H. Wei and A. Zunger, Phys. Rev. B 60, 5404 (1999).

    Article  ADS  Google Scholar 

  23. Landolt–Bornstein Numerical Data and Functional Relationships in Science and Technology, Ed. by O. Madelung, M. Schultz, and H. Weiss, New Series (Springer, Berlin, 1982), Vol. 17: Semiconductors— Basic Data, Ed. by O. Madelung, 2nd ed. (Springer, New York, 1996).

  24. S. Wei and A. Zunger, Appl. Phys. Lett. 72, 2011 (1998).

    Article  ADS  Google Scholar 

  25. C. G. van de Walle, Phys. Rev. B 39, 1871 (1989).

    Article  ADS  Google Scholar 

  26. wwwnextnanode.

  27. http://wwwcaamriceedu/software/ARPACK.

  28. N. N. Ledentsov, J. Bohrer, M. Beer, F. Heinrichsdorff, M. Grundmann, D. Bimberg, S. V. Ivanov, B. Y. Meltser, S. V. Shaposhnikov, I. N. Yassievich, N. N. Faleev, P. S. Kopev, and Z. I. Alferov, Phys. Rev. B 52, 14058 (1995).

    Article  ADS  Google Scholar 

  29. F. Hatami, N. N. Ledentsov, M. Grundmann, J. Bohrer, F. Heinrichsdorff, M. Beer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Gosele, J. Heydenreich, U. Richter, S. V. Ivanov, B. Ya. Meltser, P. S. Kop’ev, and Z. I. Alferov, Appl. Phys. Lett. 67, 656 (1995).

    Article  ADS  Google Scholar 

  30. S. K. Brieley, J. Appl. Phys. 74, 2760 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Abramkin.

Additional information

Original Russian Text © D.S. Abramkin, K.M. Rumynin, A.K. Bakarov, D.A. Kolotovkina, A.K. Gutakovskii, T.S. Shamirzaev, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 103, No. 11, pp. 785–791.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramkin, D.S., Rumynin, K.M., Bakarov, A.K. et al. Quantum dots formed in InSb/AlAs and AlSb/AlAs heterostructures. Jetp Lett. 103, 692–698 (2016). https://doi.org/10.1134/S0021364016110023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016110023

Navigation