Skip to main content
Log in

Separation of ions on the front of a shock wave in a multicomponent plasma

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The structure of a shock wave propagating in a plasma with two types of ions has been studied within the model of multifluid hydrodynamics based on the 13-moment system of Grad’s equations. Although the averaged dynamics of the shock front coincides with the single-component variant of the average-ion model, its structure is different at a noticeable difference between charge-to-mass ratios of different ions, demonstrating their separation on the shock front. For the problem of inertial confinement fusion, the range of parameters for which such a separation is important, as well as physical processes determining the two-component structure of the shock front, has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zeldovich, Sov. Phys. JETP 5, 919 (1957).

    Google Scholar 

  2. V. D. Shafranov, Sov. Phys. JETP 5, 1183 (1957).

    MathSciNet  Google Scholar 

  3. V. S. Imshennik, Zh. Vychisl. Mat. Mat. Fiz. 2, 206 (1962).

    Google Scholar 

  4. M. Y. Jaffrin and R. F. Probstein, Phys. Fluids 7, 1658 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  5. Y. M. Kazhdan, R. N. Antonova, and V. S. Imshennik, Plasma Phys. Rep. 32, 301 (2006).

    Article  ADS  Google Scholar 

  6. T. O. Masser, J. G. Wohlbier, and R. B. Lowrie, Shock Waves 21, 367 (2011).

    Article  ADS  Google Scholar 

  7. Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (2nd ed., Nauka, Moscow, 1966; Academic Press, New York, 1966, 1967).

    Google Scholar 

  8. S. W. Haan, J. D. Lindl, D. A. Callahan, D. S. Clark, J. D. Salmonson, B. A. Hammel, L. J. Atherton, R. C. Cook, M. J. Edwards, S. Glenzer, A. V. Hamza, S. P. Hatchett, M. C. Herrmann, D. E. Hinkel, D. D. Ho, et al., Phys. Plasmas 18, 1001 (2011).

    Article  ADS  Google Scholar 

  9. J. Lindl, O. Landen, J. Edwards, and E. Moses, Phys. Plasmas 21, 020501 (2014).

    Article  ADS  Google Scholar 

  10. P. Amendt, S. C. Wilks, C. Bellei, C. K. Li, and R. D. Petrasso, Phys. Plasmas 18, 056308 (2011).

    Article  ADS  Google Scholar 

  11. O. Larroche, Phys. Plasmas 19, 122706 (2012).

    Article  ADS  Google Scholar 

  12. G. Kagan and X. Tang, Phys. Plasmas 19, 082709 (2012).

    Article  ADS  Google Scholar 

  13. C. Bellei, P. A. Amendt, S. C. Wilks, M. G. Haines, D. T. Casey, C. K. Li, R. Petrasso, and D. R. Welch, Phys. Plasmas 20, 012701 (2013).

    Article  ADS  Google Scholar 

  14. A. Inglebert, B. Canaud, and O. Larroche, Eur. Phys. Lett. 107, 65003 (2014).

    Article  ADS  Google Scholar 

  15. C. Bellei and P. A. Amendt, Phys. Rev. E 90, 013101 (2014).

    Article  ADS  Google Scholar 

  16. C. Bellei, H. Rinderknecht, A. Zylstra, M. Rosenberg, H. Sio, C. K. Li, R. Petrasso, S. C. Wilks, and P. A. Amendt, Phys. Plasmas 21, 056310 (2014).

    Article  ADS  Google Scholar 

  17. P. Amendt, C. Belle, J. S. Ross, and J. Salmonson, Phys. Rev. E 91, 023103 (2015).

    Article  ADS  Google Scholar 

  18. N. M. Hoffman, G. B. Zimmerman, K. Molvig, H. G. Rinderknecht, M. J. Rosenberg, B. J. Albright, A. N. Simakov, H. Sio, A. B. Zylstra, M. G. Johnson, F. H. Seguin, J. A. Frenje, C. K. Li, R. D. Petrasso, D. M. Higdon, et al., Phys. Plasmas 22, 052707 (2015).

    Article  ADS  Google Scholar 

  19. R. Center, Phys. Fluids 10, 1777 (1967).

    Article  ADS  Google Scholar 

  20. H. Grad, Comm. Pure Appl. Phys. 2, 331 (1949).

    MathSciNet  Google Scholar 

  21. Y. Ohr, Phys. Fluids 13, 2105 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Torrilhon and H. Struchtrup, J. Fluid Mech. 513, 171 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Y. Timokhin, Y. A. Bondar, A. A. Kokhanchik, M. S. Ivanov, I. E. Ivanov, and I. A. Kryukov, Phys. Fluids 27, 037101 (2015).

    Article  ADS  Google Scholar 

  24. J. M. Burgers, Flow Equations for Composite Gases (Academic, New York, 1969).

    MATH  Google Scholar 

  25. R. W. Schunk, Space Sci. 23, 437 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Glazyrin.

Additional information

Original Russian Text © S.I. Glazyrin, A.S. Kuratov, V.Yu. Bychenkov, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 103, No. 4, pp. 263–268.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazyrin, S.I., Kuratov, A.S. & Bychenkov, V.Y. Separation of ions on the front of a shock wave in a multicomponent plasma. Jetp Lett. 103, 238–243 (2016). https://doi.org/10.1134/S0021364016040068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016040068

Keywords

Navigation