Skip to main content
Log in

On coherent mode-locking in a two-section laser

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Currently existing lasers with passive mode-locking are two-section systems including an amplifier section and a saturable absorber section. The mechanism of generation of short pulses in them is based on the effects of saturation of the gain in the amplifier and absorption in the absorber, which prevent obtaining pulses with durations shorter than the relaxation time of the polarization in the amplifying and absorbing media. In this work, the new possibility of the generation of ultrashort pulses in a laser with passive mode-locking owing to the coherent character of the interaction of light with matter in the amplifying and absorbing media in ring and linear cavities has been theoretically analyzed. A practically interesting case where the amplifying and absorbing media are separated in the space of the cavity, rather than being homogeneously mixed in its volume, as was previously considered for such type of lasers, has been studied. It has been shown that the width of the spectrum of generated pulses can be much larger than the width of the amplification line and can vary depending on the parameters of the amplifying and absorbing media of the laser. The existence of nonsoliton scenarios of the regime of coherent passive mode synchronization, as well as the possibility of generation without injection of an auxiliary pulse, has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U. Keller, Nature 424, 831 (2003).

    Article  ADS  Google Scholar 

  2. S. Rulliere, Femtosecond Laser Pulses (Springer Science, Berlin, 2005).

    Book  Google Scholar 

  3. E. U. Rafailov, M. A. Cataluna, and W. Sibett, Nature Photon. 1, 395 (2007).

    Article  ADS  Google Scholar 

  4. E. U. Rafailov, M. A. Cataluna, and E. A. Avrutin, Ultrafast Lasers Based on Quantum Dot Structures (Wiley, Berlin, 2011).

    Book  Google Scholar 

  5. D. Arsenijevi, M. Kleinert, and D. Bimberg, IEEE Photon. J. 6, 0700306 (2013).

    Google Scholar 

  6. P. G. Kryukov, Phys. Usp. 56, 849 (2013).

    Article  ADS  Google Scholar 

  7. H. A. Haus, IEEE J. Quantum Electron. 11, 736 (1975).

    Article  ADS  Google Scholar 

  8. H. A. Haus, IEEE J. Appl. Phys. 47, 3049 (1975).

    Article  ADS  Google Scholar 

  9. G. H. C. New, IEEE J. Quantum. Electron. 10, 115 (1974).

    Article  ADS  Google Scholar 

  10. Ya. I. Khanin, Fundamentals of Laser Dynamics (Cambridge International Science, 2006).

    Google Scholar 

  11. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).

    Article  Google Scholar 

  12. F. X. Kurtner, J. A. der Au, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).

    Article  Google Scholar 

  13. A. G. Vladimirov and D. Turaev, Phys. Rev. A 72, 033808 (2005).

    Article  ADS  Google Scholar 

  14. R. M. Arkhipov, A. Pimenov, M. Radziunas, A. G. Vladimirov, D. Arsenjevic, D. Rachinskii, H. Schmeckebier, and D. Bimberg, IEEE J. Sel. Top. Quantum Electron. 19, 1100208 (2013).

    Article  Google Scholar 

  15. S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).

    Article  ADS  Google Scholar 

  16. P. G. Kryukov and V. S. Letokhov, Sov. Phys. Usp. 12, 641 (1970).

    Article  ADS  Google Scholar 

  17. I. A. Poluektov, Yu. M. Popov, and V. S. Roitberg, Sov. Phys. Usp. 18, 673 (1975).

    Article  ADS  Google Scholar 

  18. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, 1975).

    Google Scholar 

  19. V. V. Kozlov and E. E. Fradkin, J. Exp. Theor. Phys. 80, 191 (1995).

    ADS  Google Scholar 

  20. V. V. Kozlov, Phys. Rev. A 56, 1607 (1997).

    Article  ADS  Google Scholar 

  21. C. Menyuk and M. A. Talukder, Phys. Rev. Lett. 102, 23903 (2009).

    Article  ADS  Google Scholar 

  22. C. Menyuk and M. A. Talukder, Phys. Rev. A 79, 063841 (2009).

    Article  ADS  Google Scholar 

  23. V. V. Kozlov, N. N. Rosanov, and S. Wabnitz, Phys. Rev. A 84, 053810 (2011).

    Article  ADS  Google Scholar 

  24. V. V. Kozlov and N. N. Rosanov, Opt. Spectrosc. 114, 798 (2013).

    Article  ADS  Google Scholar 

  25. V. S. Egorov and I. A. Chekhonin, Opt. Spectrosc. 60, 405 (1986).

    ADS  Google Scholar 

  26. V. P. Kalosha, M. Müller, and J. Herrmann, J. Opt. Soc. Am. B 16, 323 (1999).

    Article  ADS  Google Scholar 

  27. I. Babushkin, Yu. A. Logvin, and N. A. Loiko, Quantum Electron. 28, 104 (1998).

    Article  ADS  Google Scholar 

  28. I. Babushkin, Y. A. Logvin, and N. Loiko, J. Exp. Theor. Phys. 90, 133 (2000).

    Article  ADS  Google Scholar 

  29. J. Schüttler, I. Babushkin, and W. Lange, Phys. Rev. A 78, 035802 (2008).

    Article  ADS  Google Scholar 

  30. M. Schulz-Ruhtenberg, I. V. Babushkin, N. A. Loiko, K. F. Huang, and T. Ackemann, Phys. Rev. A 81, 023819 (2010).

    Article  ADS  Google Scholar 

  31. M. V. Arkhipov, R. M. Arkhipov, and S. A. Pulkin, Opt. Spectrosc. 114, 831 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Arkhipov.

Additional information

Original Russian Text © R.M. Arkhipov, M.V. Arkhipov, I.V. Babushkin, 2015, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 101, No. 3, pp. 164–169.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, R.M., Arkhipov, M.V. & Babushkin, I.V. On coherent mode-locking in a two-section laser. Jetp Lett. 101, 149–153 (2015). https://doi.org/10.1134/S0021364015030029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015030029

Keywords

Navigation