Skip to main content
Log in

Methodological and instrumental problems in high-precision in situ ellipsometry diagnostics of the mercury cadmium telluride layer composition in molecular beam epitaxy

  • Laboratory Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Problems of high-precision in situ ellipsometry diagnostics of the composition of a mercury cadmium telluride (MCT) solid solution in the process of its growth using the molecular beam epitaxy are considered. The required precision was estimated for ellipsometry measurements aimed at determining the MCT composition with a permissible dispersion of ±0.003 mole fraction of CdTe. It has been revealed that for ellipsometers based on the static photometric scheme the instability of measurements is mainly caused by a random change in the directivity of the laser radiation. In combination with polarization nonuniformity over the area of the optical-section elements, this results in continuous drift of measured ellipsometric parameters. Based on these investigations, a high-stability laser ellipsometer has been designed. When used to monitor the in situ MCT layer growth by the molecular beam epitaxy, it allowed a decrease in the dispersion of the MCT composition by an order of magnitude from experiment to experiment and its precision to be maintained at a level of ±0.003 mole fractions of CdTe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogalski, A., Infrared Phys. Technol., 1997, vol. 38, p. 295.

    Article  ADS  Google Scholar 

  2. Mercury Cadmium Telluride. INSPEC. EMIS Datareviews Ser., No. 3, Brice, J. and P. Gapper, Eds., London: IEE, 1987.

  3. Wu, O.K., Proc. SPIE—Int. Soc. Opt. Eng., 1994, vol. 2021, p. 79.

    ADS  Google Scholar 

  4. Phillips, J., Edwall, D., Lee, D., and Arias, J., J. Vac. Sci. Technol., 2001, vol. 19, no. 4, p. 1580.

    Article  Google Scholar 

  5. Edwall, D., Phillips, J., Lee, D., and Arias, J., J. Electron. Mater., 2001, vol. 30, no. 6, p. 643.

    Article  ADS  Google Scholar 

  6. De Lion, T.J., Olson, G.L., Roth, J.A., Jensen, J.E., Hunter, A.T., Jack, M.D., and Bailey, S.L., J. Electron. Mater., 2002, vol. 31, no. 7, p. 688.

    Article  ADS  Google Scholar 

  7. Svitashev, K.K., Shvets, V.A., Mardezhov, A.S., Dvoretskii, S.A., Sidorov, Yu.G., and Varavin, V.S., Zh. Tekh. Fiz., 1995, vol. 65, no. 9, p. 110.

    Google Scholar 

  8. Svitashev, K.K., Shvets, V.A., Mardezhov, A.S., Dvoretsky, S.A., Sidorov, Yu.G., Mikhailov, N.N., Spesivtsev, E.V., and Rykhlitsky, S.V., Mat. Sci. Eng., B, 1997, vol. 44, nos. 1-3, p. 164.

    Article  Google Scholar 

  9. Svitashev, K.K., Shvets, V.A., Mardezhov, A.S., Dvoretskii, S.A., Sidorov, Yu.G., Spesivtsev, E.V., Rykhlitskii, S.V., Chikichev, S.I., and Pridachin, D.N., Avtometriya, 1996, no. 4, p. 100.

    Google Scholar 

  10. Vina, L., Umbach, C., Cardona, M., and Vodopyanov, L., Phys. Rev., B: Condens. Matter, 1984, vol. 29, no. 12, p. 6752.

    Article  ADS  Google Scholar 

  11. Mikhailov, N.N., Shvets, V.A., Dvoretskii, S.A., Spesivtsev, E.V., Sidorov, Yu.G., Rykhlitskii, S.V., and Smirnov, R.N., Avtometriya, 2003, vol. 39, no. 2, p. 71.

    Google Scholar 

  12. Shvets, V.A., Dvoretskii, S.A., and Mikhailov, N.N., Tech. Phys. The Russ. J. Appl. Phys., 2009, vol. 54, no. 11, p. 1602.

    Google Scholar 

  13. Shvets, V.A., Mikhailov, N.N., and Dvoretskii, S.A., Optoelectronics, Instrumentation and Data Processing 2011, vol. 47, no. 5, p. 426.

    Article  Google Scholar 

  14. Shvets, V.A., Spesivtsev, E.V., and Rykhlitskii, S.V., Opt. Spectrosc., 2004, vol. 97, no. 3, p. 483.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shvets.

Additional information

Original Russian Text © V.A. Shvets, I.A. Azarov, E.V. Spesivtsev, S.V. Rykhlitskii, M.V. Yakushev, D.V. Marin, N.N. Mikhailov, V.D. Kuzmin, V.G. Remesnik, S.A. Dvoretsky, 2016, published in Pribory i Tekhnika Eksperimenta, 2016, No. 6, pp. 87–94.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvets, V.A., Azarov, I.A., Spesivtsev, E.V. et al. Methodological and instrumental problems in high-precision in situ ellipsometry diagnostics of the mercury cadmium telluride layer composition in molecular beam epitaxy. Instrum Exp Tech 59, 857–864 (2016). https://doi.org/10.1134/S0020441216060099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441216060099

Navigation