Skip to main content
Log in

Comparative analysis of the physicochemical characteristics of SiO2 aerogels prepared by drying under subcritical and supercritical conditions

  • Published:
Inorganic Materials Aims and scope

Abstract

SiO2-based aerogels have been produced be removing a solvent (ethanol or hexafluoroisopropanol) from lyogels both above and below the critical temperature of the alcohols (in the range 210–260 and 160–220°C, respectively). The resultant materials have been characterized by low-temperature nitrogen adsorption measurements, X-ray diffraction, thermal analysis, scanning electron microscopy, X-ray microanalysis, and small-angle and ultrasmall-angle neutron scattering. The results demonstrate that removing the solvent 20–30°C below the critical temperature of the solvent yields silica that is characterized by higher specific porosity and has the same or a larger specific surface area in comparison with the aerogels produced by drying under supercritical conditions. The nature of the solvent used and the solvent removal temperature influence the size and aggregation behavior of primary clusters and the cluster aggregate size in the aerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J., Nakanishi, H., Pollanen, J., Smoukov, S., Halperin, W.P., and Grzybowski, B.A., Nanoparticleloaded aerogels and layered aerogels cast from sol–gel mixtures, Small, 2011, vol. 7, no. 18, pp. 2568–2572.

    Article  CAS  Google Scholar 

  2. Nanomaterialy: Svoistva i perspektivnye primeneniya (Properties and Potential Applications of Nanomaterials), Yaroslavtsev, A.B., Ed., Moscow: Nauchnyi Mir, 2014.

  3. Schmidt, M. and Schwertfeger, F., Applications for silica aerogel products, J. Non-Cryst. Solids, 1998, vol. 225, pp. 364–368.

    Article  CAS  Google Scholar 

  4. Anderson, M.L., Stroud, R.M., Morris, C.A., Merzbacher, C.I., and Rolison, D.R., Tailoring advanced nanoscale materials through synthesis of composite aerogel architectures, Adv. Eng. Mater., 2000, vol. 2, no. 8, pp. 481–488.

    Article  Google Scholar 

  5. Pajonk, G.M., Catalytic aerogels, Catal. Today, 1997, vol. 35, no. 3, pp. 319–337.

    Article  CAS  Google Scholar 

  6. Melde, B.J., Johnson, B.J., and Charles, P.T., Mesoporous silicate materials in sensing, Sensors, 2008, vol. 8, no. 8, pp. 5202–5228.

    Article  CAS  Google Scholar 

  7. He, Y.L. and Xie, T., Advances of thermal conductivity models of nanoscale silica aerogel insulation material, Appl. Thermal Eng., 2015, vol. 81, pp. 28–50.

    Article  CAS  Google Scholar 

  8. Pierre, A.C. and Pajonk, G.M., Chemistry of aerogels and their applications, Chem. Rev., 2002, vol. 102, no. 11, pp. 4243–4266.

    Article  CAS  Google Scholar 

  9. Gurav, J.L., Jung, I.K., Park, H.H., Kang, E.S., and Nadargi, D.Y., Silica aerogel: synthesis and applications, J. Nanomater., 2010, vol. 2010, paper 409 310.

    Google Scholar 

  10. Moretti, A., Maroni, F., Osada, I., Nobili, F., and Passerini, S., V2O5 aerogel as a versatile cathode material for lithium and sodium batteries, ChemElectroChem, 2015, vol. 2, no. 4, pp. 529–537.

    Article  CAS  Google Scholar 

  11. Balakhonov, S.V., Vatsadze, S.Z., and Churagulov, B.R., Effect of supercritical drying parameters on the electrochemical properties of vanadium oxide-based aerogels, Inorg. Mater., 2017, vol. 53, no. 2, pp. 181–184.

    Article  CAS  Google Scholar 

  12. Campbell, L.K., Na, B.K., and Ko, E.I., Synthesis and characterization of titania aerogels, Chem. Mater., 1992, vol. 4, no. 6, pp. 1329–1333.

    Article  CAS  Google Scholar 

  13. Yao, N., Cao, S., and Yeung, K.L., Mesoporous TiO2–SiO2 aerogels with hierarchal pore structures, Microporous Mesoporous Mater., 2009, vol. 117, no. 3, pp. 570–579.

    Article  CAS  Google Scholar 

  14. Luo, L., Cooper, A.T., and Fan, M., Preparation and application of nanoglued binary titania–silica aerogel, J. Hazard. Mater., 2009, vol. 161, no. 1, pp. 175–182.

    Article  CAS  Google Scholar 

  15. Yorov, Kh.E., Sipyagina, N.A., Malkova, A.N., Baranchikov, A.E., Lermontov, S.A., Borilo, L.P., and Ivanov, V.K., Methyl tert-butyl ether as a new solvent for the preparation of SiO2–TiO2 binary aerogels, Inorg. Mater., 2016, vol. 52, no. 2, pp. 163–169.

    Article  CAS  Google Scholar 

  16. Gavrilov, A.I., Balakhonov, S.V., and Churagulov, B.R., Synthesis and photocatalytic activity of anatase-based aerogels, Inorg. Mater., 2016, vol. 52, no. 12, pp. 1240–1243.

    Article  CAS  Google Scholar 

  17. Miller, J.B., Rankin, S.E., and Ko, E.I., Strategies in controlling the homogeneity of zirconia–silica aerogels: effect of preparation on textural and catalytic properties, J. Catal., 1994, vol. 148, no. 2, pp. 673–682.

    Article  CAS  Google Scholar 

  18. Pekala, R.W., Alviso, C.T., Kong, F.M., and Hulsey, S.S., Aerogels derived from multifunctional organic monomers, J. Non-Cryst. Solids, 1992, vol. 145, pp. 90–98.

    Article  CAS  Google Scholar 

  19. Shea, K.J. and Loy, D.A., Bridged polysilsesquioxanes. Molecular-engineered hybrid organic–inorganic materials, Chem. Mater., 2001, vol. 13, no. 10, pp. 3306–3319.

    Article  CAS  Google Scholar 

  20. Gui, X., Wei, J., Wang, K., Cao, A., Zhu, H., Jia, Y., and Wu, D., Carbon nanotube sponges, Adv. Mater., 2010, vol. 22, no. 5, pp. 617–621.

    Article  CAS  Google Scholar 

  21. Worsley, M.A., Pauzauskie, P.J., Olson, T.Y., Biener, J., Satcher, J.H., Jr., and Baumann, T.F., Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc., 2010, vol. 132, no. 40, pp. 14067–14069.

    Article  CAS  Google Scholar 

  22. Mazraeh-shahi, Z.T., Shoushtari, A.M., Abdouss, M., and Bahramian, A.R., Relationship analysis of processing parameters with micro and macro structure of silica aerogel dried at ambient pressure, J. Non-Cryst. Solids, 2013, vol. 376, pp. 30–37.

    Article  CAS  Google Scholar 

  23. Omranpour, H. and Motahari, S., Effects of processing conditions on silica aerogel during aging: role of solvent, time and temperature, J. Non-Cryst. Solids, 2013, vol. 379, pp. 7–11.

    Article  CAS  Google Scholar 

  24. Rao, A.V., Bhagat, S.D., Hirashima, H., and Pajonk, G.M., Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor, J. Colloid Interface Sci., 2006, vol. 300, no. 1, pp. 279–285.

    Article  CAS  Google Scholar 

  25. Zhou, X., Zhong, L., and Xu, Y., Surface modification of silica aerogels with trimethylchlorosilane in the ambient pressure drying, Inorg. Mater., 2008, vol. 44, no. 9, pp. 976–979.

    Article  CAS  Google Scholar 

  26. Kirkbir, F., Murata, H., Meyers, D., and Chaudhuri, S.R., Drying of aerogels in different solvents between atmospheric and supercritical pressures, J. Non-Cryst. Solids, 1998, vol. 225, pp. 14–18.

    Article  CAS  Google Scholar 

  27. Yoda, S. and Ohshima, S., Supercritical drying media modification for silica aerogel preparation, J. Non- Cryst. Solids, 1999, vol. 248, no. 2, pp. 224–234.

    Article  CAS  Google Scholar 

  28. Tajiri, K., Igarashi, K., and Nishio, T., Effects of supercritical drying media on structure and properties of silica aerogel, J. Non-Cryst. Solids, 1995, vol. 186, pp. 83–87.

    Article  CAS  Google Scholar 

  29. Lermontov, S.A., Straumal, E.A., Mazilkin, A.A., Zverkova, I.I., Baranchikov, A.E., Straumal, B.B., and Ivanov, V.K., How to tune the alumina aerogels structure by the variation of a supercritical solvent. Evolution of the structure during heat treatment, J. Phys. Chem. C, 2016, vol. 120, no. 6, pp. 3319–3325.

    Article  CAS  Google Scholar 

  30. Wang, S., Raychaudhuri, S., and Sarkar, A., US Patent 5 264 197, 1993.

    Google Scholar 

  31. Radulescu, A., Kentzinger, E., Stellbrink, J., Dohmen, L., Alefeld, B., Rücker, U., and Richter, D., KWS-3: the new (very) small-angle neutron scattering instrument based on focusing-mirror optics, Neutron News, 2005, vol. 16, no. 2, pp. 18–21.

    Article  Google Scholar 

  32. Goerigk, G. and Varga, Z., Comprehensive upgrade of the high-resolution small-angle neutron scattering instrument KWS-3 at FRM II, J. Appl. Crystallogr., 2011, vol. 44, no. 2, pp. 337–342.

    Article  CAS  Google Scholar 

  33. Wignall, G.D.T. and Bates, F.S., Absolute calibration of small-angle neutron scattering data, J. Appl. Crystallogr., 1987, vol. 20, no. 1, pp. 28–40.

    Article  CAS  Google Scholar 

  34. http://www.iff.kfa-juelich.de/~pipich/dokuwiki/doku. php/qtikws.

  35. Lermontov, S., Malkova, A., Yurkova, L., Straumal, E., Gubanova, N., Baranchikov, A., Smirnov, M., Tarasov, V., Buznik, V., and Ivanov, V., Hexafluoroisopropyl alcohol as a new solvent for aerogels preparation, J. Supercrit. Fluids, 2014, vol. 89, pp. 28–32.

    Article  CAS  Google Scholar 

  36. Lermontov, S.A., Malkova, A.N., Sipyagina, N.A., Baranchikov, A.E., Petukhov, D.I., and Ivanov, V.K., Hydrophobicity/hydrophilicity control for SiO2-based aerogels: the role of a supercritical solvent, Russ. J. Inorg. Chem., 2015, vol. 60, no. 10, pp. 1169–1172.

    Article  CAS  Google Scholar 

  37. Lowell, S., Shields, J.E., Thomas, M.A., and Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Dordrecht: Kluwer Academic, 2012.

    Google Scholar 

  38. Lermontov, S.A., Malkova, A.N., Sipyagina, N.A., Baranchikov, A.E., Petukhov, D.I., and Ivanov, V.K., Hexafluoroacetone: a new solvent for manufacturing SiO2-based aerogels, Russ. J. Inorg. Chem., 2015, vol. 60, no. 5, pp. 541–545.

    Article  CAS  Google Scholar 

  39. Nanoscale Materials in Chemistry, Klabunde, K.J. and Richards, R.M., Eds., New York: Wiley, 2009, p. 213.

  40. Hüsing, N. and Schubert, U., Aerogels—airy materials: chemistry, structure, and properties, Angew. Chem., Int. Ed., 1998, vol. 37, pp. 22–45.

    Article  Google Scholar 

  41. Kitahara, S., Dissolution of heat-treated silica gel powders in alcohols at 100° to 250°C, Nippon Kagaku Zasshi, 1969, vol. 90, no. 3, pp. 237–241.

    Article  CAS  Google Scholar 

  42. Asano, T. and Kitahara, S., The dissolution of heattreated silica gel powders and change of their surface induced by treatment with methanol at 150–250°C, Nippon Kagaku Zasshi, 1970, vol. 91, no. 2, pp. 109–117.

    Article  CAS  Google Scholar 

  43. Deshpande, R., Hua, D.-W., Smith, D.M., and Brinker, C.J., Pore structure evolution in silica gel during aging/drying. III. Effects of surface tension, J. Non-Cryst. Solids, 1992, vol. 144, pp. 32–44.

    Article  CAS  Google Scholar 

  44. Bear, J., Dynamics of Fluids in Porous Media, New York: American Elsevier, 1972.

    Google Scholar 

  45. Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Thermophysical Properties of Gases and Liquids: A Handbook), Moscow: Nauka, 1972.

    Google Scholar 

  46. Volyak, L.D., Equations for evaluating the surface tension of liquids, Teploenergetika, 1958, no. 7, pp. 33–37.

    Google Scholar 

  47. Hybrid organic–inorganic composites, Mark, J.E., Lee, C.Y.-C., and Bianconi, P.A., Eds., Washington DC: American Chemical Society, 1995, pp. 97–111.

  48. Beaucage, G., Approximations leading to a unified exponential power-law approach to small-angle scattering, J. Appl. Crystallogr., 1995, vol. 28, pp. 717–728.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lermontov.

Additional information

Original Russian Text © S.A. Lermontov, A.N. Malkova, N.A. Sipyagina, Kh.E. Yorov, G.P. Kopitsa, A.E. Baranchikov, V.K. Ivanov, V. Pipich, N.K. Szekely, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 12, pp. 1302–1310.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lermontov, S.A., Malkova, A.N., Sipyagina, N.A. et al. Comparative analysis of the physicochemical characteristics of SiO2 aerogels prepared by drying under subcritical and supercritical conditions. Inorg Mater 53, 1270–1278 (2017). https://doi.org/10.1134/S002016851712007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851712007X

Keywords

Navigation