Skip to main content
Log in

Effect of Heat Transfer on the First and Second Law Efficiency Analysis and Optimization of an Air-standard Atkinson Cycle

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

In this paper, the first and second-law analysis for the thermodynamic air-standard Atkinson cycle with an account for heat transfer is performed using finite-time thermodynamics. In order to have more accurate evaluations, the effects of thermodynamic and design key parameters on the performance characteristics of Atkinson cycle are shown. Further, artificial neural network and imperialist competition algorithm are employed to predict and optimize the net work output value versus the minimum cycle temperature and also the compression ratio. The results obtained show that the heat loss is an effective factor of the performance of the cycle and it should be considered in the analysis and comparison of practical internal combustion engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Heywood, J.B., Internal Combustion Engine Fundamentals, New York: McGraw-Hill, 1997.

    Google Scholar 

  2. Borgnakke, C. and Sonntag, R.E., Fundamental of Thermodynamics, New York: Wiley, 2009, 7th ed.

    Google Scholar 

  3. Cengel, Y.A. and Boles, M.A., Thermodynamics: An Engineering Approach, New York: McGraw-Hill, 2010, 7th ed.

    Google Scholar 

  4. Bejan, A., Advanced Engineering Thermodynamics, Hoboken, NJ: Wiley, 2006.

    Google Scholar 

  5. Zhao, Y. and Chen, J., Appl. Energy, 2006, vol. 83, p. 789.

    Article  Google Scholar 

  6. Ge, Y., Chen, L.Sun., and Wu, C., Appl. Energy, vol. 83, p. 1210.

  7. Ge, Y., Chen, L.Sun., and Wu, C., Appl. Energy, 2005, vol. 81, p. 397.

    Article  Google Scholar 

  8. Chen, L., Zhang, W., and Sun, F., Appl. Energy, 2007, vol. 84, p. 512.

    Article  Google Scholar 

  9. Hou, S.S., Energy Convers. Manage., 2007, vol. 48, p. 1683.

    Article  Google Scholar 

  10. Parlak, A., Energy Convers. Manage., 2005, vol. 46, p. 351.

    Article  Google Scholar 

  11. Rakopoulos, C.D. and Giakoumis, E.G., Prog. Energy Combust. Sci., 2006, vol. 32, p. 2.

    Article  Google Scholar 

  12. Lior, N. and Zhang, N., Energy, 2007, vol. 32, p. 281.

    Article  Google Scholar 

  13. Som, S.K. and Datta, A., Prog. Energy Combust. Sci., 2008, vol. 34, p. 351.

    Article  Google Scholar 

  14. Lior, N. and Rudy, G.J., Energy Convers. Manage., 1988, vol. 28, p. 327.

    Article  Google Scholar 

  15. Rashidi, M.M., Anwar Bég, O., and Habibzadeh, A., Int. J. Energy Res., 2012, vol. 36, p. 231.

    Article  Google Scholar 

  16. Rashidi, M.M., Hajipour, A., and Fahimirad, A., Int. J. Mechatronics, Electr. Comput. Technol., 2014, vol. 4, p. 315.

    Google Scholar 

  17. Rashidi, M.M., Mousapour, A., and Hajipour, A., Heat Mass Transfer, 2014, vol. 50, p. 1177.

    Article  ADS  Google Scholar 

  18. Rashidi, M.M., Hajipour, A., Mousapour, A., Ali, M., Xie, G., and Freidoonimehr, N., Adv. Mech. Eng., 2014, vol. 6. https://doi.org/10.1155/2014/359872

  19. Hajipour, A., Rashidi, M.M., Ali, M., Yang, Z., and Anwar Bég, O., Arabian J. Sci. Eng., 2015, vol. 41, p. 1635.

    Article  Google Scholar 

  20. Ge, Y., Chen, L., and Sun, F., Appl. Energy, 2008, vol. 85, p. 618.

    Article  Google Scholar 

  21. Ge, Y., Chen, L., and Sun, F., Math. Comput. Modell., 2009, vol. 50, p. 101.

    Article  Google Scholar 

  22. Hou, S.S. and Lin, J.C., Acta Phys. Pol., A, 2011, vol. 120, p. 979.

    Article  Google Scholar 

  23. Rashidi, M.M., Galanis, N., Nazari, F., Basiri Parsa, A., and Shamekhi, L., Energy, 2011, vol. 36, p. 5728.

    Article  Google Scholar 

  24. Mousapour, A., Hajipour, A., Rashidi, M.M., and Freidoonimehr, N., Energy, 2016, vol. 94, p. 100.

    Article  Google Scholar 

  25. Habibzadeh, A., Rashidi, M.M., and Galanis, N., Energy Convers. Manage., 2013, vol. 65, p. 381.

    Article  Google Scholar 

  26. Atashpaz-Gargari, E. and Lucas, C., Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition, in Proc. 2007 IEEE Congress on Evolutionary Computation (CEC), Singapore, 2007, p. 4661.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hajipour.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajipour, A., Rashidi, M.M., Ali, M.E. et al. Effect of Heat Transfer on the First and Second Law Efficiency Analysis and Optimization of an Air-standard Atkinson Cycle. High Temp 56, 433–438 (2018). https://doi.org/10.1134/S0018151X18030227

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18030227

Navigation