Skip to main content
Log in

Approximation of experimental constants of chemical reaction rates in a wide temperature range

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

This article discusses possible methods of approximation of constants of chemical reaction rates onto a region of values that is beyond the limits of the experimental temperature range. In particular, this work studies direct approximation of constants of chemical reaction rates obtained upon processing of experimental values, approximation based on an analytical simulated dependence of the integral cross section of the process on energy, and approximation based on direct solution of the equation for constants of the chemical reaction rates at an arbitrary dependence of the process integral cross section on energy. The integral equation has been solved using the Tikhonov regularization. It is shown that this approach makes it possible to determine the threshold energy as well as to recover the form of the cross section. A second-order reaction CH4 → CH3 + H has been considered, the activation energy of which is 44560 K. Based on the calculation for the temperature range of 10000–50000 K, the following approximation can be recommended: 5.04 × 10−6 T −1.5 exp(−45377/T), cm−3/s. The obtained data can be applied for various calculations, in particular, in problems of hypersound gas dynamics, as well as for filling databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Surzhikov, S.T., High Temp., 2011, vol. 49, no. 1, p. 92.

    Article  Google Scholar 

  2. Kotov, D.V. and Surzhikov, S.T., High Temp., 2012, vol. 50, no. 1, p. 120.

    Article  Google Scholar 

  3. Danilov, I.M. and Son, E.E., High Temp., 2010, vol. 48, no. 4, p. 572.

    Article  Google Scholar 

  4. Nonequilibrium Oscillator Kinetics, Kapitelli, M., Ed., New York: Springer-Verlag, 1986.

    Google Scholar 

  5. Gordiets, B.F., Osipov, A.I., and Shelepin, L.A., Kineticheskie protsessy v gazakh i molekulyarnye lazery (Kinetic Processes in Gases and Molecular Lasers), Moscow: Nauka, 1980.

    Google Scholar 

  6. Adamovich, I.V., Macheret, S.O., Rich, J.W., and Treanor, C.E., J. Thermophys. Heat Transfer, 1998, vol. 12, no. 1, p. 57.

    Article  Google Scholar 

  7. Kovach, E.A., Losev, S.A., Sergievskaya, A.L., and Khrapak, N.A., Fiz.-Khim. Kinet. Gazov. Din., 2010, vol. 10. http://www.chemphys.edu.ru/pdf/2010-07-08-002.pdf.

  8. Tarantola, A., Inverse Problem Theory Society for Industrial and Applied Mathematics, Philadelphia (Pennsylvania, United States): The Society for Industrial and Applied Mathematics, 2005.

    Google Scholar 

  9. Nemtsova, O.M., Vestn. Udm. Univ., Fiz., 2005, no. 4, p. 25.

  10. MatLab®. http://www.mathworks.com/.

  11. Waltz, R.A., Morales, J.L., Nocedal, J., and Orban, D., Math. Program., 2006, vol. 107, no. 3, p. 391.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bakhvalov, N.S., Zhidkov, N.P., and Kobel’kov, G.M., Chislennye metody, (Numerical Methods), Moscow: BINOM, 2006, 4th ed.

    Google Scholar 

  13. MatLab® Optimization Toolbox™. http://www.math-works.com/products/optimization/.

  14. NIST Chemical Kinetics Database Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.4 Data Version 2012.02. http://kinetics.nist.gov/.

  15. Kintech Lab Chemical Workbench®. http://kintechlab.com/products/chemical-workbench/.

  16. Reaction Design®. http://www.ReactionDesign.com.

  17. Kintecus®. http://www.kintecus.com/.

  18. Arrhenius, S.Z., Z. Phys. Chem., 1889, vol. 4, p. 226.

    Google Scholar 

  19. Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, Th., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W., and Warnatz, J., J. Phys. Chem. Ref. Data, 1994, no. 23, p. 847.

  20. Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, Th., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W., and Warnatz, J., J. Phys. Chem. Ref. Data, 1992, no. 21, p. 411.

  21. Warnatz, J., Rate Coefficients in the C/H/O System: Chapter 5, in Combustion Chemistry, Gardiner, W.C., Jr., Ed., Berlin: Springer-Verlag, 1984.

    Google Scholar 

  22. Koike, T., Kudo, M., and Yamada, H., Int. J. Chem. Kinet., 2000, no. 32, p. 1.

  23. Kiefer, J.H. and Kumaran, S.S., J. Phys. Chem., 1993, no. 97, p. 414.

  24. Klemm, R.B., Sutherland, J.W., Rabinowitz, M.J., Patterson, P.M., Quartemont, J.M., and Tao, W., J. Phys. Chem., 1992, no. 96, p. 1786.

  25. Davidson, D.F., DiRosa, M.D., Chang, A.Y., Hanson, R.K., and Bowman, C.T., Symp. Int. Combust. Proc., 1992, no. 24, p. 589.

  26. Stewart, P.H., Smith, G.P., and Golden, D.M., Int. J. Chem. Kinet., 1989, no. 21, p. 923.

  27. Roth, P., Forsch. Ingenieurwes., 1980, no. 46, p. 93.

  28. Tabayashi, K. and Bauer, S.H., Combust. Flame, 1979, no. 34, p. 63.

  29. Roth, P. and Just, T.H., NBS Spec. Publ. (US), 1979, no. 10, p. 1339.

  30. Penner, S.S., Sulzmann, K.G.P., Heffington, W.M., and Parks, G.E., Arch. Termodyn. Spalania, 1978, no. 9, p. 340.

  31. Heffington, W.M., Parks, G.E., Sulzmann, K.G.P., and Penner, S.S., Symp. Int. Combust. Proc., 1977, vol. 16, p. 99.

    Article  Google Scholar 

  32. Roth, P. and Just, Th., Ber. Bunsen-Ges. Phys. Chem., 1975, vol. 79, p. 682.

    Article  Google Scholar 

  33. Gardiner, W.C., Owen, J.H., and Clark, T.C., Symp. Int. Combust. Proc., 1975, vol. 15, p. 377.

    Article  Google Scholar 

  34. Bowman, C.T., Symp. Int. Combust. Proc., 1975, vol. 15, p. 43.

    Article  Google Scholar 

  35. Vompe, G.A., Russ. J. Phys. Chem., 1973, vol. 47, p. 1396.

    Google Scholar 

  36. Hartig, R., Troe, J., and Wagner, H.G.G., Symp. Int. Combust. Proc., 1971, vol. 13, p. 147.

    Article  Google Scholar 

  37. Dean, A.M. and Kistiakowsky, G.B., J. Chem. Phys., 1971, vol. 54, p. 1718.

    Article  ADS  Google Scholar 

  38. Placzek, D.W., Rabinovitch, B.S., and Whitten, G.Z., J. Chem. Phys., 1965, vol. 43, p. 4071.

    Article  ADS  Google Scholar 

  39. Hausen, C.F., Phys. Fluids, 1969, vol. 12, no. 5, p. 1127.

    Article  ADS  Google Scholar 

  40. Utterbak, N.G., Phys. Rev. Lett., 1968, vol. 20, p. 1021.

    Article  ADS  Google Scholar 

  41. Utterbak, N.G. and Miller, G.H., Phys. Rev. Lett., 1961, vol. 124, p. 1477.

    ADS  Google Scholar 

  42. Kieffer, L.I. and Dunn, G.H., Rev. Mod. Phys., 1966, vol. 38, p. 1.

    Article  ADS  Google Scholar 

  43. Physical and Chemical Processes in Gas Dynamics, Chernyi, G.G. and Losev, S.A., Eds., Danvers (Massachusetts, United States): American Institute of Aeronautics and Astronautics, 2002, vol. 1.

    Google Scholar 

  44. Trajmar, S., Register, D.F., and Chutjian, A., Phys. Rep., 1983, vol. 97, p. 219.

    Article  ADS  Google Scholar 

  45. Brunger, M.J. and Buckman, S.J., Phys. Rep., 2002, vol. 357, p. 215.

    Article  ADS  Google Scholar 

  46. Cross-Section Data, Mitio, Inokuti, Ed., San Diego (California, United States): Academic, 1994.

    Google Scholar 

  47. Tikhonov, A.N. and Arsenin, V.Ya., Solutions of Ill-Posed Problems, Washington, DC: Winston, 1977.

    MATH  Google Scholar 

  48. Vasil’eva, A.B. and Tikhonov, N.A., Integral’nye uravneniya (Integral Equations), Moscow: Fizmatlit, 2002.

    MATH  Google Scholar 

  49. Svehla, R.A., Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures: NASA Technical Report, Washington, DC: National Aeronautics and Space Administration, 1962, no. NASA-TR-R-132.

    Google Scholar 

  50. Polak, L.S., Neravnovesnaya khimicheskaya kinetika i ee primenenie (Nonequilibrium Chemical Kinetics and Its Applications), Moscow: Nauka, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Tsyganov.

Additional information

Original Russian Text © D.L. Tsyganov, 2013, published in Teplofizika Vysokikh Temperatur, 2013, Vol. 51, No. 1, pp. 97–104.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsyganov, D.L. Approximation of experimental constants of chemical reaction rates in a wide temperature range. High Temp 51, 90–96 (2013). https://doi.org/10.1134/S0018151X13010203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X13010203

Keywords

Navigation