Skip to main content
Log in

Production of Ultrafine Iron Powder by Combining Electrolysis and High-Voltage Discharge

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Optimal conditions for producing ultrafine iron powder by combining the processes of electrolysis and high-voltage discharge have been determined. It has been established that the maximum current efficiency q = 97.88% is achieved at a current density of D = 10000 A/m2, an iron sulfate concentration of C(FeSO4⋅7H2О) = 50 g/L, a process duration of τ = 60 min, an ammonium sulfate concentration of C((NH4)2SO4) = 40 g/L, and a voltage of U = 8000 V. Using electron microscopy, it has been found that the obtained iron powder contains nanosized particles having the BET specific surface area of 31.5 ± 0.3 m2/g as determined using low-temperature nitrogen adsorption. Analysis by Mössbauer spectroscopy showed the presence of magnetically ordered phases α-Fe and γ-Fe2O3, a phase close to α-FeOOH hydroxide (goethite), and possibly a mixture of β-FeOOH (acoghanite) and γ-FeOOH (lepidocrocite). It has been found that the conversion of phenanthrene during hydrogenation for 60 min in the presence of this iron powder is higher than in the presence of the industrial iron–chromium catalyst STK-1 and reaches 32.99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Burakov, V.S., Savastenko, N.A., Tarasenko, N.V., and Nevar, E.A., Zh. Prikl. Spektrosk., 2008, vol. 75, no. 1, p. 111.

    Google Scholar 

  2. Saito, G. and Akiyama, T., J. Nanomater., 2015, vol. 2015, article ID 123696.

    Article  Google Scholar 

  3. Horikoshi, S. and Serpone, N., RSC Adv., 2017, no. 75, p. 47196.

  4. Krastev, D. and Yordanov, B., Micro Nanosyst., 2014, vol. 6, no. 1, p. 21.

    Article  CAS  Google Scholar 

  5. Aristova, N.A., Piskarev, I.M., Ivanovskii, A.V., Selemir, V.D., Spirov, G.M., and Shlepkin, S.I., Russ. J. Phys. Chem., 2004, vol. 78, no. 7, p. 1144.

    Google Scholar 

  6. Shutov, D.A., Batova, N.A., and Rybkin, V.V., High Energy Chem., 2020, vol. 54, no. 1, p. 59.

    Article  CAS  Google Scholar 

  7. Piskarev, I.M., High Energy Chem., 2020, vol. 54, no. 3, p. 205.

    Article  CAS  Google Scholar 

  8. Son, E.E., Suvorov, I.F., Kakurov, S.V., Gaisin, Al.F., Samitova, G.T., Solov’eva, T.L., Yudin, A.S., and Rakhletsova, T.V., High Temp., 2014, vol. 52, no. 4, p. 490.

    Article  CAS  Google Scholar 

  9. Yutkin, L.A., Elektrogidravlicheskii effekt i ego primenenie v promyshlennosti (Electrohydraulic Effect and Its Application in Industry), Leningrad: Mashinostroenie, 1986.

  10. Impulse Breakdown of Liquids, Ushakov, V.Ya., Ed., Berlin: Springer, 2005.

    Google Scholar 

  11. Aksel’rud, G.A. and Molchanov, A.D., Rastvorenie tverdykh veshchestv (Dissolution of Solid Substances), Moscow: Khimiya, 1977.

  12. Ibishev, K.S., Malyshev, V.P., Kim, S.V., Sarsembaev, B.Sh., and Egorov, N.B., High Energy Chem., 2017, vol. 51, no. 3, p. 219.

    Article  CAS  Google Scholar 

  13. Malyshev, V.P., Veroyatnostno-determinirovannoe otobrazhenie (Probabilistic–Deterministic Mapping) Karaganda: Gylym, 1994.

  14. Wang, K., Guan, J., He, D., and Zhang, Q., Adv. Mater. Res., 2012, vols. 512–515, p. 2200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kim.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.V., Baikenov, M.I., Ainabaev, A.A. et al. Production of Ultrafine Iron Powder by Combining Electrolysis and High-Voltage Discharge. High Energy Chem 56, 201–207 (2022). https://doi.org/10.1134/S0018143922030067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143922030067

Keywords:

Navigation