Skip to main content
Log in

Photooxidative Resistance of Polytetrafluoroethylene–Graphene Nanocomposites to Vacuum Ultraviolet Radiation

  • PHOTOCHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The process of photooxidation of polytetrafluoroethylene composites with graphene by irradiation with monochromatic vacuum ultraviolet light at a wavelength of 123.6 nm from a resonant krypton lamp in the presence of air has been investigated by IR spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurement. It has been shown that the introduction of small additives of graphene (1–10 wt%) into the polytetrafluoroethylene matrix leads to a significant decrease in the rate of the photodegradation process and, as a consequence, to improvement in the performance characteristics of the polymer under photooxidation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kim, H. and Abdala, A.A., Macosko, C.W., Macromolecules, 2010, vol. 43, p. 6515.

    Article  CAS  Google Scholar 

  2. Li, B. and Zhong, W.H., J. Mater. Sci., 2011, vol. 46, p. 5595.

    Article  CAS  Google Scholar 

  3. Scaffaro, R., Botta, L., Maio, A., Mistretta, M., and Mantia, F.L., Materials (Basel), 2016, vol. 9.

  4. Goncalves, C., Goncalves, I., Magalhaes, F., and Pinto, A., Polymers (Basel), 2017, vol. 9.

  5. Botta, L., Scaffaro, R., Sutera, F., and Mistretta, M.C., Polymers (Basel), 2017, vol. 10.

  6. Kalaitzidou, K., Fukushima, H., and Drzal, L.T., Compos., Part A: Appl. Sci. Manuf., 2007, vol. 38, p. 1675.

    Article  Google Scholar 

  7. Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., et al., J. Mater. Chem. C, 2016, vol. 4, p. 157.

    Article  CAS  Google Scholar 

  8. Vasilets, V.N., Shulga, Yu.M., Irzhak, A.V., Melezhik, A.V., and Tkachev, A.G., High Energy Chem., 2019, vol. 53, no. 4, p. 282.

    Article  CAS  Google Scholar 

  9. Pashnin, Yu.A., Malkevich, S.G., and Dunaevskaya, Ts.S., Ftoroplasty (Fluoroplastics) Leningrad: Khimiya, 1978.

    Google Scholar 

  10. Pascale, I.V., Herrmann, D., and Miner, R., J. Mod. Plast., 1963, vol. 41, no. 2, p. 239.

    CAS  Google Scholar 

  11. Mistretta, M.C., Botta, L., Vinci, A.D., Ceraulo, M., and La Mantia F.P., Polym. Degrad. Stab., 2019, vol. 160, p. 35.

    Article  CAS  Google Scholar 

  12. Tang, X., Tian, M., Qua, L., Zhu, S., Guo, X., Han, G., Sun, K., Hua, X., Wang, Y., and Xu, X., Synth. Met., 2015, vol. 202, p. 82.

    Article  CAS  Google Scholar 

  13. Tian, M., Wang, Z., Qu, L., Wang, K., Zhu, S., Zhang, X., and Liu, R., Int. J. Cloth. Sci. Technol., 2018, vol. 30, no. (6), p. 817.

  14. Melezhyk, A.V. and Tkachev, A.G., Nanosystems: Phys. Chem. Math., 2014, vol. 5, p. 294.

    Google Scholar 

  15. Melezhyk, A.V., Kotov, V.A., and Tkachev, A.G., J. Nanosci. Nanotechnol., 2016, vol. 16, p. 1067.

    Article  CAS  Google Scholar 

  16. Melezhik, A.V., Pershin, V.F., Memetov, N.R., and Tkachev, A.G., Nanotechnol. Russ., 2016, vol. 11, p. 421.

    Article  CAS  Google Scholar 

  17. Shulga, Yu.M., Vasilets, V.N., Baskakov, S.A., Muradyan, V.E., Skryleva, E.A., and Parkhomenko, Yu.N., Khim. Vys. Energ., 2012, vol. 46, no. 2, p. 160.

    Google Scholar 

  18. Krimm, S., Adv. Polym. Sci., 1960, vol. 2, p. 51.

    Article  CAS  Google Scholar 

  19. Shulga, Yu.M., Melezhik, A.V., Kabachkov, E.N., Milovich, F.O., Lyskov, N.V., Tkachev, A.G., and Redkozubov, E.P., High Energy Chem., 2019, vol. 53, no. 1, p. 47.

    Article  CAS  Google Scholar 

  20. Frasca, D., Schulze, D., Wachtendorf, V., Huth, C., and Schartel, B., Eur. Polym. J., 2015, vol. 71, p. 99.

    Article  CAS  Google Scholar 

  21. Frasca, D., Schulze, D., Wachtendorf, V., Krafft, B., Rybak, T., and Schartel, B., Polymers (Basel), 2016, vol. 8, p. 95.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00046, and carried out on a State Task topic, state registry nos. AAAA-A18-118112290069-6 and AAAA-A19-119032690060-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Vasilets.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilets, V.N., Shulga, Y.M., Kabachkov, E.N. et al. Photooxidative Resistance of Polytetrafluoroethylene–Graphene Nanocomposites to Vacuum Ultraviolet Radiation. High Energy Chem 55, 280–284 (2021). https://doi.org/10.1134/S0018143921040147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143921040147

Keywords:

Navigation