Skip to main content
Log in

EPR Spectroscopy of Diazoquinone–Novolac Resist Films Implanted with P+ and B+ Ions

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The nature of stable radicals in FP9120 positive photoresist films implanted with boron and phosphorus ions and deposited on the surface of single-crystal silicon wafers has been determined using the EPR technique. At an implantation fluence of 6 × 1015 cm−2, a narrow singlet isotropic line with a g-factor of 2.0064 is observed in the EPR spectrum. As the fluence increased to 1.2 × 1016 cm−2, the g-factor decreased to values close to the g-factor of the free electron. The concentration of paramagnetic centers was higher during implantation of phosphorus ions than in the samples implanted with boron ions. This difference is due to a smaller contribution of nuclear stopping during B+ implantation, which does not exceed 10–15% of electronic stopping. The formation of long-lived paramagnetic centers recorded by EPR a week after implantation of positive phenol–formaldehyde photoresist is due to the presence of a powerful system of conjugated >C=O and –C=C– multiple bonds in the structure of the radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kondyurin, A. and Bilek, M., Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space, Amsterdam: Elsevier, 2015.

    Google Scholar 

  2. Wallace, W.E., Chiou, T.T., Rothman, J.B., and Composto, R.J., Nucl. Instrum. Methods Phys. Res.,Sect. B, 1995, vol. 103, p. 435.

    CAS  Google Scholar 

  3. Vabishchevich, N., Brinkevich, D., Volobuev, V., Lukashevich, M., Prosolovich, V., Sidorenko, Yu., Odzhaev, V., and Partyka, J., Acta Phys. Pol., A, 2011, vol. 120, no. 1, p. 46.

    Article  CAS  Google Scholar 

  4. Steenken, S. and Neta, P., The Chemistry of Phenols, Rappoport, Z., Ed., Chichester: Wiley, 2003, p. 1107.

    Google Scholar 

  5. Brinkevich, D.I., Kharchenko, A.A., Prosolovich, V.S., Odzhaev, V.B., Brinkevich, S.D., and Yankovskii, Yu.N., Russ. Microelectron., 2019, vol. 48, no. 3, p. 197.

    Article  CAS  Google Scholar 

  6. Eksperimental’nye metody khimicheskoi kinetiki (Experimental Methods of Chemical Kinetics), Emanuel, N.M and Kuz’min, M.G, Ed., Moscow: Izd. MGU, 1985, p. 10.

  7. Kuzina, S.I., Brezgunov, A.Yu., Dubinskii, A.A., and Mikhailov, A.I., High Energy Chem., 2004, vol. 38, no. 5, p. 298.

    Article  CAS  Google Scholar 

  8. Odzhaev, V.B., Kozlov, I.P., Popok, V.N., and Sviridov, D.V., Ionnaya implantatsiya polimerov (Ion Implantation of Polymers), Minsk: Belgosuniversitet, 1998.

  9. Pozdnyakov, A.O., Handge, U.A., Konchits, A.A., and Altstädt, F., Tech. Phys. Lett., 2010, vol. 36, no. 10, p. 960.

    Article  CAS  Google Scholar 

  10. Gardziella, A., Pilato, L.A., and Knop, A., Phenolic Resins: Chemistry, Applications, Standardization, Safety and Ecology, 2nd. ed., Berlin: Springer, 2000.

    Book  Google Scholar 

  11. Eksperimental’nye metody khimii vysokikh energii (Experimental Techniques in High Energy Chemistry), Mel’nikov, M.Ya., Ed., Moscow: Izd. MGU, 2009, p. 169.

  12. Pikaev, A.K., Sovremennaya radiatsionnaya khimiya. Tverdoe telo i polimery. Prikladnye aspekty (Modern Radiation Chemistry: Solids, Polymers, and Applied Aspects), Moscow: Nauka, 1987.

  13. Brinkevich, S.D., Reztsov, I.A., and Shadyro, O.I., High Energy Chem., 2014, vol. 48, no. 5, p. 303.

    Article  CAS  Google Scholar 

  14. Brinkevich, S.D., High Energy Chem., 2015, vol. 49, no. 2, p. 77.

    Article  CAS  Google Scholar 

  15. Brinkevich, D.I., Brinkevich, S.D., Vabishchevich, N.V., Odzhaev, V.B., and Prosolovich, V.S., Russ. Microelectron., 2014, vol. 43, no. 3, p. 194.

    Article  CAS  Google Scholar 

  16. Vabishchevich, S.A., Brinkevich, S.D., Brinkevich, D.I., and Prosolovich, V.S., High Energy Chem., 2020, vol. 54, no. 1, p. 46.

    Article  CAS  Google Scholar 

  17. Samovich, S.N., Brinkevich, S.D., Edimecheva, I.P., and Shadyro, O.I., Radiat. Phys. Chem., 2014, vol. 100, p. 13.

    Article  CAS  Google Scholar 

  18. Brinkevich, S.D. and Shadyro, O.I., High Energy Chem., 2018, vol. 52, no. 4, p. 364.

    Article  CAS  Google Scholar 

  19. Harchenko, A.A., Brinkevich, D.I., Brinkevich, S.D., Lukashevich, M.G., and Odzhaev, V.B., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2015, vol. 9, no. 1, p. 87.

    Article  CAS  Google Scholar 

  20. Brinkevich, D.I., Kharchenko, A.A., Brinkevich, S.D., Lukashevich, M.G., Odzhaev, V.B., Valeev, V.F., Nuzhdin, V.I., and Khaibullin, R.I., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2017, vol. 11, no. 4, p. 801.

    Article  CAS  Google Scholar 

  21. Harchenko, A.A., Brinkevich, D.I., Brinkevich, S.D., Lukashevich, M.G., and Odzhaev, V.B., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2015, no. 2, p. 371.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Brinkevich.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brinkevich, D.I., Brinkevich, S.D., Oleshkevich, A.N. et al. EPR Spectroscopy of Diazoquinone–Novolac Resist Films Implanted with P+ and B+ Ions. High Energy Chem 54, 115–122 (2020). https://doi.org/10.1134/S0018143920020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920020046

Keywords:

Navigation