Skip to main content
Log in

Time function triple Langmuir probe measurements in low frequency pulsed DC discharge plasma

  • Plasma Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

This study investigated the temporal profiles of electron temperature and number density in rectified DC air discharge generated with a 50 Hz step-up transformer. An in-house built triple Langmuir probe and circuitry were used to diagnose the plasma parameters as a function of input voltage and filling gas pressure. A tungsten metal wire capable of withstanding the high temperatures was used as probe tip material. The temporal profiles revealed an increase in electron temperature with input voltage in the range of 380 to 450 V, whereas, an inverse relation between number density and input voltage was evident in the given work. The observed trend in the plasma parameters was absolutely reversed in case of the filling gas pressure. The electron temperature linearly decreased with an increase in pressure from 1 to 4 mbar, whereas a linear increase in number density with pressure was seen in the temporal profiles. Finally, it was concluded that the results for the tested plasma parameters were consistent and the in-house built probe functioned well in DC discharge for the used range of voltage and filling pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donnelly, V.M., J. Appl. Phys., 2004, vol. 37, p. 217.

    Google Scholar 

  2. Naz, M.Y., Shukrullah, S., Ghaffar, A., and Rehman, N.U., Sci. World J., 2014, vol. 2014, p. 279868.

    CAS  Google Scholar 

  3. Kravchenko, A.V., Berlizova, S.A., Nesterenko, A.F., and Kublanovskii, V.S., High Energy Chem., 2004, vol. 38, p. 333.

    Article  CAS  Google Scholar 

  4. Rehman, N.U., Murtaza, G., Naz, M.Y., Shafiq, M., and Zakaullah, M., Phys. Scripta, 2013, vol. 88, p. 045503.

    Article  Google Scholar 

  5. Chen, F.F. and Chang, J.P., Plenum Kluwer Publishers, 2002, vol. 79, p. 5730.

    Google Scholar 

  6. Hutchinson, I.H., Cambridge: Cambridge University Press, 2002, p. 90.

  7. Gatsonis, N.A., Byrne, L.T., Zwahlen, J.C., Pencil, E.J., and Kamhawi, H., IEEE Trans. Plasma Sci., 2004, vol. 32, p. 2118.

    Article  Google Scholar 

  8. Gatsonis, N.A., Zwahlen, J.C., Wheelock, A., Pencil, E.J., and Kamhawi, H., J. Propul. Power, 2004, vol. 20, p. 243.

    Article  Google Scholar 

  9. Eckman, R.F., Byrne, L., Gatsonis, N.A., and Pencil, E.J., J. Propul. Power, 2001, vol. 17, p. 762.

    Article  Google Scholar 

  10. Chen, F.F., Introduction to Plasma Physics and Controlled Fusion, 2nd Ed., N.Y.: Plenum Press,, 1984.

    Book  Google Scholar 

  11. Naz, M.Y., Shukrullah, S., Ghaffar, A., Shakir, I., Ullah, S., and Sagir, M., Surf. Rew. Lett., 2014, vol. 21, p. 1450056.

    Article  Google Scholar 

  12. Naz, M.Y., Ghaffar, A., Rehman, N.U., Naseer, S., and Zakaullah, M., Prog. Electromagn. Res., 2011, vol. 114, p. 113.

    Article  Google Scholar 

  13. Yong, S.I., Lim, H.B., and Houk, R.S., J. Anal. At. Spectrom., 2002, vol. 17, p. 565.

    Article  Google Scholar 

  14. Skorodumov, A.E., Sitanov, D.V., and Svettsov, V.I., High Energy Chem., 2000, vol. 34, p. 331.

    Article  CAS  Google Scholar 

  15. Pu, Y.K., Guo, Z.G., Rehman, A.U., and Yu, Z.D., J. Plasma Phys. Control. Fusion, 2006, vol. 48, p. 61.

    Article  CAS  Google Scholar 

  16. Qayyum, A., Ahmad, N., Ahmad, S., Deeba, F., Ali, R., and Hussain, S., Rev. Sci. Instrum., 2013, vol. 84, p. 123502.

    Article  CAS  Google Scholar 

  17. Hwang, K.T., Oh, S.J., Choi, I.J., and Chung, C.W., Phys. Plasmas, 2010, vol. 17, p. 063501.

    Article  Google Scholar 

  18. Schwabedissen, A., Benck, E.C., and Roberts, J.R., Phys. Rev., 1997, vol. 56, p. 5866.

    Article  CAS  Google Scholar 

  19. Lee, M.H., Jang, S.H., and Chung, C.W., J. Appl. Phys., 2007, vol. 101, p. 033305.

    Article  Google Scholar 

  20. Yong, K.S., Lim, H.B., and Houk, R.S., J. Anal. At. Spectrom., 2002, vol. 17, p. 565.

    Article  Google Scholar 

  21. Masashi, S., George, R.T., and Robert, C., Plasma Sources Sci. Technol., 2007, vol. 16, p. 193.

    Article  Google Scholar 

  22. Oh, S.J., Choi, I.J., Kim, J.Y., and Chung, C.W., Meas. Sci. Technol., 2012, vol. 23, p. 085001.

    Article  Google Scholar 

  23. Rudenko, K.V., High Energy Chem., 2009, vol. 43, p. 196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. U. Farooq.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, M.U., Ali, A., Qayyum, A. et al. Time function triple Langmuir probe measurements in low frequency pulsed DC discharge plasma. High Energy Chem 49, 286–293 (2015). https://doi.org/10.1134/S0018143915040086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143915040086

Keywords

Navigation